Optical Review

, Volume 24, Issue 3, pp 361–369 | Cite as

Design of liquid-glass achromatic zoom lens

  • Ao Yang
  • Lihua Ning
  • Xingyu Gao
  • Mingfeng Li
  • Wenjie Li
Regular Paper
  • 231 Downloads

Abstract

Optical liquids are ideal materials for designing apochromatic lens due to their lower refractive index and higher Abbe numbers than those of the ordinary optical glasses. Based on the Buchdahl dispersion formula, the dispersion coefficient diagram of liquids and glasses is established. The liquid-glass combination lens(LGCL) with small secondary spectrum is obtained by calculating the combination structure with low dispersion liquid and glasses. The initial optical structure of the liquid-glass apochromatic lens(LGAL) can be obtained by replacing two glass lenses in an initial optical system with the LGCL. Using the multi-configuration optimization of ZEMAX, the liquid-glass achromatic zoom lens (LGAZL) can be designed by optimizing the LGAL. The LGAZL has an objective field of view ϕ63 mm–ϕ57 mm, an image field of view 8 mm, a working distance 240 mm and the zoom range of focal length 75–85 mm. The chromatic aberration and the secondary spectrum of the LGAZL are all less than 3 μm in the whole zoom range.

Keywords

Lens system design Liquid zoom lens Aberration optimization 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 61265010); and Natural Science Foundation of Guangxi Province (Grant No. 2015jjBA70017).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Sigler, R.D.: Apochromatic color correction using liquid lenses. Appl. Opt. 29, 2451 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    Tsai, F.S., Cho, S.H., Lo, Y.H., et al.: Miniaturized universal imaging device using fluidic lens. Opt. Lett. 33, 291 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Tsai, F.S., Johnson, D., Francis, C.S., et al.: Fluidic lens laparoscopic zoom camera for minimally invasive surgery. J. Biomed. Opt. 15, 030504 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Lee, S., Choi, M., Lee, E., et al.: Zoom lens design using liquid lens for laparoscope. Opt. Express 21, 1751 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Duocastella, M., Theriault, C., Arnold, C.B.: Three-dimensional particle tracking via tunable color-encoded multiplexing. Opt. Lett. 41, 863 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Peng, R.L., Li, Y.F., Hu, S.L., et al.: Intraocular lens based on double-liquid variable-focus lens. Appl. Opt. 53, 249 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Li, L., Wang, D., Liu, C., Wang, Q.-H.: Zoom microscope objective using electrowetting lenses. Opt. Express. 24, 2931 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Lu, Y. L., Tu, H., Xu, Y., Jiang, H.G.: Tunable dielectric liquid lens on flexible substrate. Appl. Phys. Lett. 103, 261113 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Wei, K., Domicone, N.W., Zhao, Y.: Electroactive liquid lens driven by an annular membrane. Opt. Lett. 39, 1318 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    Dean, J.L., Hirsa, A.H.: Performance of a microscope with an embedded oscillating pinned-contact liquid lens. Appl. Opt. 54, 8228–8234 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Hasan, N., Kim, H., Mastrangelo, C.H.: Large aperture tunable-focus liquid lens using shape memory alloy spring. Opt. Express. 24, 13334 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Reichelt, S., Zappe, H.: Design of spherically corrected, achromatic variable-focus liquid lenses. Opt. Express. 15, 14146 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Li, L., Wang, Q.-H.: Zoom lens design using liquid lenses for achromatic and spherical aberration corrected target. Opt. Eng. 51, 043001 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Rayces, J.L., Rosete-Aguilar, M.: Selection of glasses for achromatic doublets with reduced secondary spectrum. I. Tolerance conditions for secondary spectrum, spherochromatism, and fifth-order spherical aberration. Appl. Opt. 40, 5663 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Rosete-Aguilar, M., Rayces, J.L.: Selection of glasses for achromatic doublets with reduced secondary spectrum. II. Application of the method for selecting pairs of glasses with reduced secondary spectrum. Appl. Opt. 40, 5677 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    de Albuquerque, BFC, Sasian, J., et al.: Method of glass selection for color correction in optical system design. Opt. Express. 20, 13592 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Yang, A., Gao, X., Li, M.: Design of apochromatic lens with large field and high definition for machine vision. Appl. Opt. 55, 5977 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Refractive Index (Matching) Liquids, Cargille Labs, [Online] Available: http://www.cargille.com/refractivestandards.shtml. Accessed April 2017
  19. 19.
    Robb, P.N.: Selection of optical glasses. 1: two materials. Appl. Opt. 24, 1864 (1985).ADSCrossRefGoogle Scholar
  20. 20.
    Mikš, A., Novák, J.: Method for primary design of superachromats. Appl. Opt. 52, 6868 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Ao Yang
    • 1
  • Lihua Ning
    • 1
  • Xingyu Gao
    • 1
  • Mingfeng Li
    • 1
  • Wenjie Li
    • 1
  1. 1.Guangxi Key Laboratory of Manufacture System and Advanced Manufacture Technology, School of Mechanical and Electrical EngineeringGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations