Advertisement

Optical Review

, Volume 24, Issue 3, pp 436–441 | Cite as

Analysis of outage probability for radio over IsOWC system in the presence of pointing error

  • Kang Zong
  • Jiang Zhu
Short Note
  • 62 Downloads

Abstract

In this paper, we analyze the outage probability of the radio over intersatellite optical wireless communication system in the presence of satellite vibration with bias error. The lower-based Mach–Zehnder modulator, optical booster amplifier and optical preamplifier are employed. First, the models of the proposed system and channel are given. Then the outage probability for a given bit error ratio (BER) of a quadrature phase shift keying signal is obtained in the presence of satellite vibration with bias error. Numerical results of outage probability with different bias error and average BER are given. Results indicate that the outage probability is obviously influenced by the pointing error and the optimum telescope diameter to minimize the outage probability exists. With the same pointing error condition, the value of the optimal telescope diameter will increase with the reduction of the given average BER.

Keywords

Outage probability Radio over IsOWC Pointing error Telescope diameter 

Notes

Acknowledgements

This work was supported by Hunan Provincial Innovation Foundation for Postgraduate.

References

  1. 1.
    Toyoshima, M., Leeb, W.R., Kunimori, H., Takano, T.: Opt. Eng. 46(1), 015003 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Sodnik, Z., Lutz, H., Furch, B., Meyer, R.: SPIE LASE, p. 758705. International Society for Optics and Photonics, Bellingham (2010)Google Scholar
  3. 3.
    Sodnik, Z., Furch, B., Lutz, H.: Sel. Topics Quantum Electron. IEEE J. 16(5), 1051 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, C.C., Gardner, C.S.: Commun. IEEE Trans. 37(3), 252 (1989)CrossRefGoogle Scholar
  5. 5.
    Shimayabu, K., Okamoto, A., Takayama, Y., Sato, K., Nakayama, Y.: 2008 34th European Conference on Optical Communication (2008), pp. 1–2Google Scholar
  6. 6.
    Arnon, S.: JOSA A 22(4), 708 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Arnon, S.: Optical Science and Technology, the SPIE 49th Annual Meeting (International Society for Optics and Photonics, 2004), pp. 320–325Google Scholar
  8. 8.
    Ma, J., Li, X., Yu, S., Tan, L., Han, Q.: Opt. Rev. 19(1), 25 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhu, Z., Zhao, S., Li, Y., Chu, X., Hou, R., Wang, X., Zhao, G.: JOSA A 29(12), 2525 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Zhu, Z., Zhao, S., Li, Y., Chu, X., Hou, R., Wang, X., Zhao, G.: Appl. Opt. 52(9), 1771 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Zhu, Z., Zhao, S., Yao, Z., Li, Y., Jiang, W., Wang, X., Zhao, G.: Iet Optoelectron. 7(4), 93 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Morello, A., Mignone, V.: Proc. IEEE 94(1), 210 (2006)CrossRefGoogle Scholar
  13. 13.
    Kolner, B.H., Dolfi, D.W.: Appl. Opt. 26(17), 3676 (1987)ADSCrossRefGoogle Scholar
  14. 14.
    Urick, V.J., Godinez, M.E., Devgan, P.S., McKinney, J.D., Bucholtz, F.: J. Lightwave Technol. 27(12), 2013 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Sisto, M.M., LaRochelle, S., Rusch, L.A.: J. Lightwave Technol. 24(12), 4974 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Toyoshima, M., Yamakawa, S., Yamawaki, T., Arai, K., Garcia-Talavera, M.R., Alonso, A., Sodnik, Z., Demelenne, B.: IEEE Trans. Antennas Propag. 53(2), 842 (2005). doi: 10.1109/TAP.2004.841329 ADSCrossRefGoogle Scholar
  17. 17.
    Jeffrey, A., Zwillinger, D.: Table of Integrals, Series, and Products. Academic Press, London (2007)Google Scholar
  18. 18.
    Shieh, W., Djordjevic, I.: OFDM for Optical Communications. Academic Press, London (2009)Google Scholar
  19. 19.
    John, G.P.: Digital Communications. McGraw-Hill Companies, New York (2001)Google Scholar
  20. 20.
    Richardson, T.J., Shokrollahi, M.A., Urbanke, R.L.: IEEE Trans. Inf. Theory 47(2), 619 (2001). doi: 10.1109/18.910578 CrossRefGoogle Scholar
  21. 21.
    ten Brink, S., Kramer, G., Ashikhmin, A.: IEEE Trans. Commun. 52(4), 670 (2004). doi: 10.1109/TCOMM.2004.826370 CrossRefGoogle Scholar
  22. 22.
    Wittig, M.E., van Holtz, L., Tunbridge, D.E.L., Vermeulen, H.C.: In-orbit measurements of microaccelerations of esa’s communication satellite olympus (1990). doi: 10.1117/12.18234

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Wireless Communication Laboratory, College of Electronic Science and EngineeringNational University of Defense TechnologyChangshaPeople’s Republic of China

Personalised recommendations