Optical Review

, Volume 24, Issue 3, pp 351–360 | Cite as

Spatially incoherent Fourier digital holography by four-step phase-shifting rotational shearing interferometer and its image quality

Regular Paper


Spatially incoherent Fourier digital holography using a rotational shearing interferometer for four-step phase-shifting method is proposed. The previous incoherent Fourier holography using a rotational shearing interferometer [Watanabe and Nomura (Appl. Opt. 54:A18, 2015)] employs the two-step phase-shifting method in the vertical and horizontal polarizations. The reconstructed image contains a large bias term. This paper proposes introduction of two kinds of wave plates in one path of a rotational shearing interferometer for a four-step phase-shifting method. A Fourier hologram is obtained from the four recorded holograms for eliminating the bias term and the twin image. The numerical simulation and the optical experiment demonstrate improvement of the image quality of reconstructed image by the twin image and bias level reduction. Furthermore, the effect of the size of an image sensor on the image quality in rotational shearing interferometer is also investigated by the numerical simulations.


Digital holography Incoherent holography Phase-shifting Fourier holography Rotational shearing interferometer 



The authors thank T. Matsuda for his experimental supports and fruitful discussion.


  1. 1.
    Rosen, J., Brooker, G.: Digital spatially incoherent Fresnel holography. Opt. Lett. 32, 912 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    Rosen, J., Brooker, G.: Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photonics 2, 190 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Kelner, R., Rosen, J.: Parallel-mode scanning optical sectioning using digital Fresnel holography with three-wave interference phase-shifting. Opt. Express 24, 2200 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Quan, X., Matoba, O., Awatsuji, Y.: Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt. Lett. 42, 383 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Kim, M.K.: Incoherent digital holographic adaptive optics. Appl. Opt. 52, A117 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Goodman, J.W.: Holography with spatially incoherent light. Introduction to Fourier optics, 3rd edn, pp. 374–377. Roberts & Company, Newport (2005)Google Scholar
  7. 7.
    Kozma, A., Massey, N.: Bias level reduction of incoherent holograms. Appl. Opt. 8, 393 (1969)ADSCrossRefGoogle Scholar
  8. 8.
    Bryngdahl, O., Lohmann, A.: One-dimensional holography with spatially incoherent light. J. Opt. Soc. Am. 58, 625 (1968)ADSCrossRefGoogle Scholar
  9. 9.
    Hong, J., Kim, M.K.: Single-shot self-interference incoherent digital holography using off-axis configuration. Opt. Lett. 38, 5196 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Wan, Y., Man, T., Wang, D.: Incoherent off-axis Fourier triangular color holography. Opt. Express 22, 8565 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Goodman, J.W.: Fresnel, Fraunhofer, image, and Fourier holograms. Introduction to Fourier optics, 3rd edn, pp. 322–323. Roberts & Company, Newport (2005)Google Scholar
  12. 12.
    Kelner, R., Rosen, J.: Spatially incoherent single channel digital Fourier holography. Opt. Lett. 37, 3723 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Muhammad, D., Nguyen, C., Lee, J., Kwon, H.: Spatially incoherent off-axis Fourier holography without using spatial light modulator (SLM). Opt. Express 24, 22097 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Kelner, R., Rosen, J., Brooker, G.: Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference. Opt. Express 21, 20131 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Watanabe, K., Nomura, T.: Recording spatially incoherent Fourier hologram using dual channel rotational shearing interferometer. Appl. Opt. 54, A18 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Weigel, D., Babovsky, H., Kiessling, A., Kowarschik, R.: Widefield microscopy with infinite depth of field and enhanced lateral resolution based on an image inverting interferometer. Opt. Commun. 342, 102 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Obara, M., Yoshimori, K.: 3D spatial resolution and spectral resolution of interferometric 3D imaging spectrometry. Appl. Opt. 55, 2489 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    Kiire, T., Nakadate, S., Shibuya, M.: Simultaneous formation of four fringes by using a polarization quadrature phase-shifting interferometer with wave plates and a diffraction grating. Appl. Opt. 47, 4787 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Kiire, T., Nakadate, S., Shibuya, M.: Phase-shifting interferometer based on changing the direction of linear polarization orthogonally. Appl. Opt. 47, 3784 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Nomura, T., Murata, S., Nitanai, E., Numata, T.: Phase-shifting digital holography with a phase difference between orthogonal polarizations. Appl. Opt. 45, 4873 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Nozawa, J., Okamoto, A., Shibukawa, A., Takabayashi, M., Tomita, A.: Two-channel algorithm for single-shot, high-resolution measurement of optical wavefronts using two image sensors. Appl. Opt. 54, 8644 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Graduate School of Systems EngineeringWakayama UniversityWakayamaJapan
  2. 2.Research Fellow of Japan Society for the Promotion of ScienceChiyodaJapan
  3. 3.Faculty of Systems EngineeringWakayama UniversityWakayamaJapan

Personalised recommendations