Optical Review

, Volume 24, Issue 3, pp 318–324 | Cite as

Dispersion compensation in optical transmission systems using high negative dispersion chalcogenide/silica hybrid microstructured optical fiber

  • Mahmood Seifouri
  • Saeed Olyaee
  • Moslem Dekamin
  • Rahim Karami
Regular Paper


In this paper, a new hybrid microstructured optical fiber (H-MOF) based upon photonic bandgap (PBG) light guiding mechanism which can be used for dispersion compensation in optical transmission systems is designed and simulated. The H-MOF core is made up of silica glass and the holes in the cladding network are filled with As2Se3 chalcogenide glass. By selecting an appropriate geometrical parameters for the structure, the dispersion and confinement losses of the proposed H-MOF at 1.55 µm are calculated to be −6700 ps/nm/km and 6 × 10−4 dB/m, respectively. Relative dispersion slope (RDS) of the H-MOF at 1.55 µm is about 0.00347 nm−1. The proposed H-MOF is suitable for use in wavelength division multiplexing and dispersion compensating systems in optical fiber transmission networks.


Chalcogenide glass Hybrid microstructured fiber Dispersion compensation Negative dispersion Confinement loss 


  1. 1.
    Selim Habib, M., Samiul Habib, M., Hasan, M.I., Razzak, S.M.A., Mahmud, R.R., Namihira, Y.: Microstructured holey fibers as wideband dispersion compensating media for high speed transmission system. Optik, 124, 4984–4988 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Namihira, Y., Hossain, M.A., Goffar Khan, M.A.: Broadband dispersion compensation of conventional single mode fibers using microstructured optical fibers. Optik 124, 3851–3855 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Hasan, M.I., Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M.: Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Opt. Fiber Technol. 20, 32–38 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Selim Habib, M., Samiul Habib, M., Abdur Razzak, S.M., Anwar Hossain, M.: Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Opt. Fiber Technol. 12, 461–467 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Singha, M., Sharma, A., Kaler, R.S.: Investigations on order and width of RZ super Gaussian pulse in pre-, post- and symmetrical-dispersion compensated 10 Gb/s optical communication system using standard and dispersion compensating fibers. Optik 121, 609–616 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    Haque, M.M., Rahman, M.S., Samiul Habib, M., Selim Habib, M., Razzak, S.M.A.: A new circular photonic crystal fiber for effective dispersion compensation over E to L wavelength bands. Microw. Optoelectron. Electromagn. Appl. 12, 2179–1074 (2013)Google Scholar
  7. 7.
    Begum, F., Namihira, Y., Abdur Razzak, S.M., Kaijage, S., Hoang Hai, N., Kinjo, T., Miyagi, K., Zou, N.: Novel broadband dispersion compensating photonic crystal fibers: applications in high-speed transmission systems. Opt. Laser Technol. 41, 679–686 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Imran Hasan, M., Samiul Habib, M., Selim Habib, M., Abdur Razzak, S.M.: Design of hybrid photonic crystal fiber: polarization and dispersion properties. Photon. Nanostruct. Fund. Appl. 12, 205–211 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Liu, Y., Li, Y., Wang, J., Wang, R., Li, J., Xie, X.: A novel hybrid photonic crystal dispersion compensating fiber with multiple windows. Opt. Laser Technol. 44, 2076–2079 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Begum, F., Namihira, Y., Abdur Razzak, S.M., Kaijage, S., Hoang Hai, N., Kinjo, T., Miyagi, K., Zou, N.: Design and analysis of novel highly nonlinear photonic crystal fibers with ultra-flattened chromatic dispersion. Opt. Commun. 282, 1416–1421 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Seifouri, M., Olyaee, S., Dekamin, M.: Chalcogenide As2Se3 multi cladding microstructured optical fiber with high nonlinearity and flattened dispersion in mid-infrared range. IJTPE 6, 11–16 (2014)Google Scholar
  12. 12.
    El-Amraoui, M., Gadret, G., Jules, J.C., Fatome, J., Fortier, C., Desevedavy, F., Skripatchev, I., Messaddeq, Y., Troles, J., Brilland, L., Gao, W., Suzuki, T., Ohishi, Y., Smektala, F.: Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt. Express 18, 26655–26665 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Toupin, P., Brilland, L., Renversez, G., Troles, J.: All-solid all-chalcogenide microstructured optical fiber. Opt. Express 21, 14643–14648 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Kawashima, H., Kohoutek, T., Yan, X., Suzuki, T., Ohishi, Y.: Chalcogenide/tellurite hybrid microstructured optical fiber with high nonlinearity and flattened dispersion. Phys. Status Solidi C 9, 2621–2624 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Suzuki, K., Hamachi, Y., Baba, T.: Fabrication and characterization of chalcogenide glass photonic crystal waveguides. Opt. Express 17, 22393–22400 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Dabas, B., Sinha, R.K.: Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Opt. Commun. 283, 1331–1337 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Conseil, C., Coulombier, Q., Boussard-Pledel, C., Troles, J., Brilland, L., Renversez, G., Mechin, D., Bureau, B., Adam, J.L., Lucas, J.: Chalcogenide step index and microstructured single mode fibers. Non-Cryst Solids 357, 2480–2483 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Szpulak, M., Fevrier, S.: Chalcogenide As2S3, suspended core fiber for mid-IR wavelength conversion based on degenerate four-wave mixing. IEEE Photon. Technol. Lett. 21, 884–886 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Cherif, R., Ben Salem, A., Zghal, M., Besnard, P., Chartier, T., Brilland, L., Troles, J.: Highly nonlinear As2Se3 based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Opt. Eng. 49, 095002–095008 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Chaudhari, C., Liao, M., Suzuki, T., Ohishi, Y.: Chalcogenide core tellurite cladding composite microstructured fiber for nonlinear applications. J. Lightwave Technol. 30, 2069–2076 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Bureau, B., Boussard, C., Cui, S., Chahal, R., Laure Anne, M., Nazabal, V., Sire, O., Loréal, O., Lucas, P., Monbet, V., Louis Doualan, J., Camy, P., Tariel, H., Charpentier, F., Quetel, L., Luc Adam, J., Lucas, J.: Chalcogenide optical fibers for mid-infrared sensing. Opt. Eng., 53, 027101–027108 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Hey Tow, K., Leguillon, Y., Fresnel, S., Besnard, P., Brilland, L., Mechin, D, Toupin, P., Troles, J.: Towards more coherent sources using a microstructured chalcogenide brillouin fiber laser. IEEE Photon. Technol. Lett. 25, 238–241 (2012)CrossRefGoogle Scholar
  23. 23.
    Markos, C.: Photo-induced changes in a hybrid amorphous chalcogenide/silica Photonic crystal fiber. Appl. Phys. Lett. 104, 011114–011118 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Granzow, N., Uebel, P., Schmidt, M.A., Tverjanovich, A.S., Wondraczek, L., Russell, P. St. J.: Bandgap guidance in hybrid chalcogenide–silica photonic crystal fibers. Opt. Lett. 36, 2432–2434 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Cheng, T., Kawashima, H., Xue, X., Deng, D., Matsumoto, M., Misumi, M., Suzuki, T., Ohishi, Y.: Fabrication of a chalcogenide-tellurite hybrid microstructureo optical fiber for flattend and broadband supercontinuum generation. J. Lightwave Tech. 33(2), 333–338 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Liao, M., Chauahari, C., Qin, G., Yan, X., Kito, C., Suzuki, T., Ohishi, Y., Matsumoto, M., Misumi, T.: Fabrication and characterization of a chalcogenide-tellurite composite microstructured fiber with high nonlinearity. J. Opt. Express 17, 21608–21614 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Markos, C., Kubat, I., Bang, O.: Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. J. Sci. Rep. 4, 6057 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Dabas, B., Sinha, R.K.: Design of highly birefringent chalcogenide glass PCF: a simplest design. Opt. Commun. 284, 1186–1191 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Desevedavy, F., Renversez, G., Troles, J., Houizot, P., Brilland, L., Vasilief, I., Coulombier, Q., Traynor, N., Smektala, F., Luc Adam, J.: Chalcogenide glass hollow core photonic crystal fibers. Opt. Mater. 32, 1532–1539 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Healy, N., Sparks, J.R., He, R.R., Sazio, P.J.A., Badding, J.V., Peacock, A.C.: High index contrast semiconductor ARROW and hybrid ARROW fibers. Opt. Express. 19, 10979–10985 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    White, T.P., Kuhlmey, B.T., McPhedran, R.C., Maystre, D., Renversez, G., Martijn de Sterke, C., Botten, L.C.: Multipole method for microstructured optical fibers. I. Formulation. Opt. Soc. Am. 19, 2322–2330 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Karami, R., Seifouri, M., Olyaee, S., Chitsazian, M., Alizadeh, M.R.: Numerical analysis of a circular chalcogenide/silica hybrid nanostructured photonic crystal fiber for the purpose of dispersion compensation. Int. J. Numer. Model. (2016). doi: 10.1002/jnm.2184 Google Scholar
  33. 33.
    Wei, W., Lan-Tian, H., Jun-Jie, S., Gui-Yao, Z.: Design of double cladding dispersion flattened photonic crystal fiber with deformation insensitive outer cladding air-holes. Opt. Commun. 282, 3468–3472 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Seifouri, M., Olyaee, S., Dekamin, M.: A new circular chalcogenide/silica hybrid microstructured optical fiber with high negative dispersion for the purpose of dispersion compensation. J. Optik. 126(21), 3093–3098 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Kato, T., Hirano, M., Fujii, T., Yokokawa, T., Yamamoto, Y., Onishi, M.: Design optimization of dispersion compensating fibers and their packaging techniques. Opt. Fiber Commun. Rep. 5, 86–109 (2007)CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Mahmood Seifouri
    • 1
  • Saeed Olyaee
    • 2
  • Moslem Dekamin
    • 1
  • Rahim Karami
    • 1
  1. 1.Faculty of Electrical EngineeringShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Nano-photonics and Optoelectronics Research Laboratory (NORLab)Shahid Rajaee Teacher Training UniversityTehranIran

Personalised recommendations