Optical Review

, Volume 24, Issue 3, pp 310–317 | Cite as

Photonic microwave multi-band frequency conversion based on a DP-QPSK modulator for satellite communication

  • Tao Lin
  • Shanghong Zhao
  • Qiurong Zheng
  • Zihang Zhu
  • Xuan Li
  • Kun Qu
Regular Paper

Abstract

We propose and demonstrate a simple, flexible and stably operated multi-band frequency conversion approach based on a dual-polarization quadrature phase shift keying modulator (DP-QPSK). The modulator incorporating two dual parallel Mach–Zehnder modulators (DPMZMs) which perform as OFC generator and +1st carrier suppressed single sideband generator, respectively, to achieve the purpose of frequency conversion. The theoretical analysis indicates that by properly adjusting six DC bias points in the integrated modulator and two modulation indices, a frequency of received RF signal can be directly converted into different frequencies that cover different bands simultaneously. The simulation results verified the possibility. For example, the received C band frequency of 3.8 GHz can be converted into X, Ku, K and Ka bands. An X band frequency of 9.6 GHz can be down-converted to C band and up-converted to Ku, K, Ka band. In addition, the simulation also focuses on how the adjustable parameters (such as DC bias points and modulation index) influence the conversion results. It demonstrates stable conversion efficiency against the DC drafting.

Keywords

Microwave photonics Conversion efficiency Optical frequency comb (OFC) Multi-band frequency conversion 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 61571461) and (No. 61401502), Natural Science Foundation of Shaan xi Province (No. 2016JQ6008).

References

  1. 1.
    Tavik, G.C., Hilterbrick, C.L., Evins, J.B., Alter, J.J., Crnkovich, J.G. Jr., de Graaf, J.W., Habicht, W. II, Hrin, G.P., Lessin, S. A., Wu, D.C., Hagewood, S.M.: The advanced multifunction RF concept. IEEE Trans. Microw. Theory Tech. 53(3), 1009–1020 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Panagopoulos, A.D., Arapoglou P.D.M., Cottis, P.G.: Satellite communications at Ku, Ka, and V bands: propagation impairments and mitigation techniques. IEEE Commun. Surv Tuts 6(3), 2–14 (2004)CrossRefGoogle Scholar
  3. 3.
    Mallette, L.A.: Atomic and quartz clock hardware for communication and navigation satellites. In: Proceedings of the 39th Annual Precise Time and Time Interval Meeting, Long Beach, CA, pp. 45–58 (2007)Google Scholar
  4. 4.
    Yao, J.P.: Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat. Photon. 1(6), 319–330 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Chang W.S.C.: RF photonic technology in optical fiber links, Chap. 10. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  7. 7.
    Gopalakrishnan, G.K., Burns, W.K., Bulmer, C. H.: Microwave-optical mixing in LiNbO3 modulators. IEEE Trans. Microw. Theory Tech. 41(12), 2383–2391 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    Juodawlkis, P., Hargreaves, J., Younger, R., Titi, G., Twichell, J.: Optical down-sampling of wide-band microwave signals. J. Lightwave Technol. 21(12), 3116–3124 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Yang, B., Jin, X., Chen, Y., Chi, H., Zhang, X., Zheng, S., Tang diongga, E., Koonen, T.: Photonic microwave up-conversion of vector signals based on an optoelectronic oscillator. IEEE Photon. Technol. Lett. 25(18), 1758–1760 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Pagán, V.R., Haas, B.M., Murphy, T.E.: Linearized electro optic microwave down-conversion using phase modulation and optical filtering. Opt. Express. 19(2), 883–895 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Lam, A.K.M., Fairburn, M., Jaeger, N.A.F.: Wide-band electro optic intensity modulator frequency response measurement using an optical heterodyne down-conversion technique. IEEE Trans. Microw. Theory Tech. 54(1), 240–246 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Zhao, Y.G., Pang, X.D., Deng, L., Yu, X.B., Zheng, X.P., Monroy, I.T.: Ultra-broadband photonic harmonic mixer based on optical comb generation. IEEE Photon. Technol. Lett. 24(7), 620 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Wiberg, A.O., Liu, L., Tong, Z., Myslivets, E., Ataie, V., Kuo, B. P., Alic, N., Radic, S.: Photonic preprocessor for analog-to-digital-converter using a cavity-less pulse source. Opt. Express. 20(26), B419–B427 (2012)CrossRefGoogle Scholar
  14. 14.
    Hamidi, E., Leaird, D.E., Weiner, A.M.: Tunable programmable microwave photonic filters based on an optical frequency comb. IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Huang, C.B., Park, S.G., Leaird, D.E., Weiner, A.M.: Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding. Opt. Express. 16(4), 2520–2527 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Yang, X., Xu, K., Yin, J., Dai, Y., Yin, F., Li, J., Lu, H., Liu, T., Ji, Y.: Optical frequency comb based multi-band microwave frequency conversion for satellite applications. Opt. Express. 22(1), 869–877 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, Q., Huo, L., Xing, Y., Zhou, B.: Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach–Zehnder modulator. Opt. Lett. 39(10), 3050–3053 (2014)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Tao Lin
    • 1
  • Shanghong Zhao
    • 1
  • Qiurong Zheng
    • 1
  • Zihang Zhu
    • 1
  • Xuan Li
    • 1
  • Kun Qu
    • 1
  1. 1.College of Information and NavigationAir Force Engineering UniversityXi’anChina

Personalised recommendations