Skip to main content
Log in

High-energy nanosecond radially polarized beam output from Nd:YAG amplifiers

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Radially polarized laser beam amplification up to the 772 mJ using flash-lamp-pumped Nd:YAG amplifiers was demonstrated. In the experiments, a nanosecond radially polarized seed beam was converted from a conventional Q-switched Nd:YAG laser output with a polarization converter and then amplified with two Nd:YAG amplifier stages. A maximum amplification output energy up to 772 mJ was achieved at 10 Hz with a 10-ns pulse, corresponding to an amplification factor of 323%. Excellent conservation of polarization was also obtained during the amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhan, Q.W.: Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)

  2. Zhan, Q.W., Leger, J.R.: Focus shaping using cylindrical vector beams. Opt. Express. 10, 324–331 (2002)

    Article  ADS  Google Scholar 

  3. Youngworth, K. S., Brown, T. G.: Focusing of high numerical aperture cylindrical-vector beams. Opt. Express. 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  4. Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901–233901 (2003)

    Article  ADS  Google Scholar 

  5. Tian, B., Pu, J.X.: Tight focusing of a double-ring-shaped, azimuthally polarized beam. Opt. Lett. 36, 2014–2016 (2011)

    Article  ADS  Google Scholar 

  6. Weber, R., Michalowski, A., Abdou-Ahmed, M., Onuseit, V., Rominger, V., Kraus, M., Graf, T.: Effects of radial and tangential polarization in laser material processing. Phys. Proc. 12, 21–30 (2011)

  7. Nesterov, A.V., Niziev, V.G.: Laser beams with axially symmetric polarization. J. Phys. D: Appl. Phys. 33, 1817–1822 (2000)

    Article  ADS  Google Scholar 

  8. Meier, M., Romano, V., Feurer, T.: Material processing with pulsed radially and azimuthally polarized laser radiation. Appl. Phys. A. 86 329–334 (2007)

  9. Wang, H., Liu, D., Zhou, Z.: The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere. Appl. Phys. B. 101, 361–369 (2010)

  10. Li, X., Lan, T.H., Tien, C.H., Gu M.: Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 998 (2012)

  11. Zhan, Q.W.: Trapping metallic Rayleigh particles with radial polarization. Opt. Express. 12, 3377–3382 (2004)

    Article  ADS  Google Scholar 

  12. Beresna, M., Gecevičius, M., Kazansky, P.G., Gertus, T.: Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011)

    Article  ADS  Google Scholar 

  13. Machavariani, G., Lumer, Y., Moshe, I., Meir, A., Jackel, S.: Spatially-variable retardation plate for efficient generation of radially-and azimuthally-polarized beams. Opt. Commun. 281, 732–738 (2008)

    Article  ADS  Google Scholar 

  14. Lin, D., J. M. O. Daniel, Gecevičius, M., Beresna, M., Kazansky, P. G., Clarkson, W. A.: Cladding-pumped ytterbium-doped fiber laser with radially polarized output. Opt. Lett. 39, 5359–5361 (2014)

    Article  ADS  Google Scholar 

  15. Kämpfe, T., Tonchev, S., Tishchenko, A.V., Gergov, D., Parriaux, O.: Azimuthally polarized laser mode generation by multilayer mirror with wideband grating-induced TM leakage in the TE stopband. Opt. Express. 20, 5392–5401 (2012)

    Article  ADS  Google Scholar 

  16. Li, J.L., Ueda, K.I., Zhong, L.X., Musha, M., Shirakawa A., Sato T.: Efficient excitations of radially and azimuthally polarized Nd3+:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb2O5/SiO2. Opt. Express 16, 10841–10848 (2008)

  17. Xia, K.G., Ueda, K.I., Li, J.L.: Radially polarized, actively Q-switched and end-pumped Nd:YAG laser. Appl. Phys. B. 107, 47–51 (2012)

  18. Ahmed, M.A., Schulz, J., Voss, A., Parriaux, O., Pommier, J.C., Graf, T.: Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror. Opt. Lett. 32, 1824–1826 (2007)

    Article  ADS  Google Scholar 

  19. Kanazawa, S., Kozawa, Y., Sato, S.: High-power and highly efficient amplification of a radially polarized beam using an Yb-doped double-clad fiber. Opt. Lett. 39, 2857–2859 (2014)

    Article  ADS  Google Scholar 

  20. Lesparre, F., Gomes, J. T., Délen, X., Martial, I., Didierjean, J., Pallmann, W., Resan, B., Eckerle, M., Graf, T., Ahmed, M.A., Druon, F., Balembois, F., Georges, P.: High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization. Opt. Lett. 40, 2517–2520 (2015)

    Article  ADS  Google Scholar 

  21. Negel, J. P., Loescher, A., Voss, A., Bauer, D., Sutter, D., Killi, A., Ahmed, M. A., Graf, T.: Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Opt. Express. 23, 21064–21077 (2015)

    Article  ADS  Google Scholar 

  22. Piehler, S., Délen, X., Rumpel, M., Didierjean, J., Aubry, N., Graf, T., Balembois, F., Georges, P., Ahmed, M.A.: Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers. Opt. Express. 21, 11376–11381 (2013)

    Article  ADS  Google Scholar 

  23. Loescher, A., Negel, J.P., Graf, T., Ahmed, M.A.: Radially polarized emission with 635 W of average power and 2.1 mJ of pulse energy generated by an ultrafast thin-disk multipass amplifier. Opt. Lett. 40, 5758–5761 (2015)

    Article  ADS  Google Scholar 

  24. Chen, X.D., Chang, C.C., Lin, Z.L., Ding, P.F., Pu, J.X.: High-Energy Nanosecond Optical Vortex Output From Nd:YAG Amplifiers. IEEE Photon. Tech. L. 28, 1271–1274 (2016)

  25. Koechner, W.: Solid-state laser engineering. Springer, New York (2006)

    MATH  Google Scholar 

  26. Kraus, M., Ahmed, M.A., Michalowski, A., Voss, A., Weber, R., Graf, T.: Microdrilling in steel using ultrashort pulsed laser beams with radial and azimuthal polarization. Opt. Express. 18, 22305–22313 (2010)

    Article  ADS  Google Scholar 

  27. Machavariani, G., Lumer, Y., Moshe, I., Meir, A., Jackel, S.: Efficient extracavity generation of radially and azimuthally polarized beams. Opt. Lett. 32, 1468–1470 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC) (61575070, 61605049, and 11674111), Fujian Province Science Funds for Distinguished Young Scholar (2015J06015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Chen or Jixiong Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Chen, X. & Pu, J. High-energy nanosecond radially polarized beam output from Nd:YAG amplifiers. Opt Rev 24, 188–192 (2017). https://doi.org/10.1007/s10043-017-0319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0319-x

Keywords

Navigation