Plasmonic tip for nano Raman microcopy: structures, materials, and enhancement


Tip-enhanced Raman scattering (TERS) microscopy is becoming an important tool for analyzing advanced nanomaterials and nanodevices because of its high spatial resolution and high sensitivity. However, despite the decade’s efforts since its invention, strong Raman enhancement is still not always reproducible. Here, Author discusses two aspects in plasmonic metal tips to achieve efficient Raman enhancement. The first is the tip structure whose plasmonic properties directly affect the scattering efficiency and thus the enhancement. The second is the plasmonic tip for deep ultraviolet (DUV), with which TERS signal can be further enhanced by incorporating the resonance Raman effect. The materials for DUV-TERS tips are shown. With the efficient tip structures and materials, nano Raman imaging with TERS microscopy becomes more reliable as it should inherently be, bringing TERS microscopy to higher levels as a nanoanalysis tool useful for everyone.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Palonpon, A.F., Sodeoka, M., Fujita, K.: Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17(4), 708–715 (2013)

    Article  Google Scholar 

  2. 2.

    Palonpon, A.F., Ando, J., Yamakoshi, H., Dodo, K., Sodeoka, M., Kawata, S., Fujita, K.: Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8(4), 677–692 (2013)

    Article  Google Scholar 

  3. 3.

    Kneipp, K., Kneipp, H., Itzkan, I., Dasari, R.R., Feld, M.S.: Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99(10), 2957–2975 (1999)

    Article  Google Scholar 

  4. 4.

    Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1974)

    ADS  Article  Google Scholar 

  5. 5.

    King, F.W., Van Duyne, R., Schatz, G.C.: Theory of Raman-scattering by molecules adsorbed on electrode surfaces. J. Chem. Phys. 69(10), 4472–4481 (1978)

    ADS  Article  Google Scholar 

  6. 6.

    Gersten, J.I.: Rayleigh, Mie, and Raman-scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 72(10), 5780–5781 (1980)

    ADS  Article  Google Scholar 

  7. 7.

    Gersten, J., Nitzan, A.: Electromagnetic theory of enhanced Raman-scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73(7), 3023–3037 (1980)

    ADS  Article  Google Scholar 

  8. 8.

    Kerker, M., Wang, D.S., Chew, H.: Surface enhanced Raman-scattering (SERS) by molecules adsorbed at spherical-particles. Appl. Opt. 19(24), 4159–4174 (1980)

    ADS  Article  Google Scholar 

  9. 9.

    Mccall, S.L., Platzman, P.M.: Raman-scattering from chemisorbed molecules at surfaces. Phys. Rev. B 22(4), 1660–1662 (1980)

    ADS  Article  Google Scholar 

  10. 10.

    Gersten, J.I.: The effect of surface-roughness on surface enhanced Raman-scattering. J. Chem. Phys. 72(10), 5779–5780 (1980)

    ADS  Article  Google Scholar 

  11. 11.

    Kneipp, K., Wang, Y., Kneipp, H., Perelman, L., Itzkan, I., Dasari, R., Feld, M.: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78(9), 1667–1670 (1997)

    ADS  Article  Google Scholar 

  12. 12.

    Nie, S., Emery, S.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275(5303), 1102–1106 (1997)

    Article  Google Scholar 

  13. 13.

    Inouye, Y., Hayazawa, N., Hayashi, K., Sekkat, Z., Kawata, S.: Near-field scanning optical microscope using a metallized cantilever tip for nanospectroscopy. SPIE’s Int. Symp. Opt. Sci. Eng. Instrum. 3791, 40–48 (1999)

    ADS  Google Scholar 

  14. 14.

    Hayazawa, N., Inouye, Y., Sekkat, Z., Kawata, S.: Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183(1–4), 333–336 (2000)

    ADS  Article  Google Scholar 

  15. 15.

    Stöckle, R.M., Suh, Y.D., Deckert, V., Zenobi, R.: Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318(1–3), 131–136 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    Furukawa, H., Kawata, S.: Local field enhancement with an apertureless near-field-microscope probe. Opt. Commun. 148(4–6), 221–224 (1998)

    ADS  Article  Google Scholar 

  17. 17.

    Hayazawa, N., Inouye, Y., Sekkat, Z., Kawata, S.: Near-field Raman imaging of organic molecules by an apertureless metallic probe scanning optical microscope. J. Chem. Phys. 117(3), 1296–1301 (2002)

    ADS  Article  Google Scholar 

  18. 18.

    Hartschuh, A., Sánchez, E.J., Xie, X.S., Novotny, L.: High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90(9), 095503 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Yano, T., Kawata, S.: Diameter-selective near-field Raman analysis and imaging of isolated carbon nanotube bundles. Appl. Phys. Lett. 88(9), 093125 (2006)

    ADS  Article  Google Scholar 

  20. 20.

    Stadler, J., Schmid, T., Zenobi, R.: Nanoscale chemical imaging of single-layer graphene. ACS Nano 5(10), 8442–8448 (2011)

    Article  Google Scholar 

  21. 21.

    Yano, T., Ichimura, T., Kuwahara, S., H’Dhili, F., Uetsuki, K., Okuno, Y., Verma, P., Kawata, S.: Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013)

  22. 22.

    Ichimura, T., Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y., Kawata, S.: Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92(22), 220801 (2004)

    ADS  Article  Google Scholar 

  23. 23.

    Saito, Y., Motohashi, M., Hayazawa, N., Iyoki, M., Kawata, S.: Nanoscale characterization of strained silicon by tip-enhanced Raman spectroscope in reflection mode. Appl. Phys. Lett. 88(14), 143109 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    Blum, C., Opilik, L., Atkin, J.M., Braun, K., Kämmer, S.B., Kravtsov, V., Kumar, N., Lemeshko, S., Li, J.F., Luszcz, K., Maleki, T., Meixner, A.J., Minne, S., Raschke, M.B., Ren, B., Rogalski, J., Roy, D., Stephanidis, B., Wang, X., Zhang, D., Zhong, J.H., Zenobi, R.: Tip-enhanced Raman spectroscopy—an interlaboratory reproducibility and comparison study. J. Raman Spectrosc. 45(1), 22–31 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    Taguchi, A., Yu, J., Verma, P., Kawata, S.: Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 7(41), 17424–17433 (2015)

    ADS  Article  Google Scholar 

  26. 26.

    Kawata, S., Inouye, Y., Verma, P.: Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics 3(7), 388–394 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    Smolyaninov, I.I., Davis, C.C., Elliott, J., Zayats, A.V.: Resolution enhancement of a surface immersion microscope near the plasmon resonance. Opt. Lett. 30(4), 382–384 (2005)

    ADS  Article  Google Scholar 

  28. 28.

    Okamoto, T., Yamaguchi, I.: Near-field scanning optical microscope using a gold particle. Jpn. J. Appl. Phys. 36(Part 2, No. 2A), L166–L169 (1997)

    ADS  Article  Google Scholar 

  29. 29.

    Kalkbrenner, T., Ramstein, M., Mlynek, J., Sandoghdar, V.: A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Taminiau, T.H., Moerland, R.J., Segerink, F.B., Kuipers, L., van Hulst, N.F.: \(\lambda\)/4 Resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett. 7(1), 28–33 (2007)

    ADS  Article  Google Scholar 

  31. 31.

    Maouli, I., Taguchi, A., Saito, Y., Kawata, S., Verma, P.: Optical antennas for tunable enhancement in tip-enhansed Raman spectroscopy imaging. Appl. Phys. Express 8(3), 032401 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    Hayazawa, N., Yano, T., Watanabe, H., Inouye, Y., Kawata, S.: Detection of an individual single-wall carbon nanotube by tip-enhanced near-field Raman spectroscopy. Chem. Phys. Lett. 376(1–2), 174–180 (2003)

    ADS  Article  Google Scholar 

  33. 33.

    Barsegova, I., Lewis, A., Khatchatouriants, A., Manevitch, A., Ignatov, A., Axelrod, N., Sukenik, C.: Controlled fabrication of silver or gold nanoparticle near-field optical atomic force probes: enhancement of second-harmonic generation. Appl. Phys. Lett. 81(18), 3461–3463 (2002)

    ADS  Article  Google Scholar 

  34. 34.

    Umakoshi, T., Yano, T., Saito, Y., Verma, P.: Fabrication of near-field plasmonic tip by photoreduction for strong enhancement in tip-enhanced Raman spectroscopy. Appl. Phys. Express 5(5), 052001 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    Schmid, T., Zhang, W., Zenobi, R.: Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal. Bioanal. Chem. 387(8), 2655–2662 (2007)

    Article  Google Scholar 

  36. 36.

    Taguchi, A., Hayazawa, N., Saito, Y., Ishitobi, H., Tarun, A., Kawata, S.: Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. Opt. Express 17(8), 6509–6518 (2009)

    ADS  Article  Google Scholar 

  37. 37.

    Inouye, Y., Kawata, S.: Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19(3), 159 (1994)

    ADS  Article  Google Scholar 

  38. 38.

    Zenhausern, F., O’Boyle, M.P., Wickramasinghe, H.K.: Apertureless near-field optical microscope. Appl. Phys. Lett. 65(13), 1623–1625 (1994)

    ADS  Article  Google Scholar 

  39. 39.

    Zhang, W., Yeo, B.S., Schmid, T., Zenobi, R.: Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111(4), 1733–1738 (2007)

    Article  Google Scholar 

  40. 40.

    Ropers, C., Neacsu, C.C., Elsaesser, T., Albrecht, M.G., Raschke, M.B., Lienau, C.: Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7(9), 2784–2788 (2007)

    ADS  Article  Google Scholar 

  41. 41.

    Johnson, T.W., Lapin, Z.J., Beams, R., Lindquist, N.C., Rodrigo, S.G., Novotny, L., Oh, S.H.: Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 6(10), 9168–9174 (2012)

    Article  Google Scholar 

  42. 42.

    Takahara, J., Yamagishi, S., Taki, H., Morimoto, A., Kobayashi, T.: Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475–477 (1997)

    ADS  Article  Google Scholar 

  43. 43.

    Dickson, R.M., Lyon, L.A.: Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B 104(26), 6095–6098 (2000)

    Article  Google Scholar 

  44. 44.

    Sánchez, E.J., Krug, J., Xie, X.: Ion and electron beam assisted growth of nanometric SimOn structures for near-field microscopy. Rev. Sci. Instrum. 73(11), 3901–3907 (2002)

    ADS  Article  Google Scholar 

  45. 45.

    Stockman, M.I.: Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93(13), 137404 (2004)

    ADS  Article  Google Scholar 

  46. 46.

    Fang, N., Lee, H., Sun, C., Zhang, X.: Sub-diffraction-limited optical imaging with a silver superlens. Science 308(5721), 534–537 (2005)

    ADS  Article  Google Scholar 

  47. 47.

    Neacsu, C.C., Neacsu, C.C., Berweger, S., Olmon, R.L., Saraf, L.V., Ropers, C., Raschke, M.B.: Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett. 10(2), 592–596 (2010)

    ADS  Article  Google Scholar 

  48. 48.

    Berweger, S., Atkin, J.M., Olmon, R.L., Raschke, M.B.: Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1(24), 3427–3432 (2010)

    Article  Google Scholar 

  49. 49.

    Asher, S.A.: UV resonance Raman-spectroscopy for analytical, physical, and biophysical chemistry. 1. Anal. Chem. 65(2), A59–A66 (1993)

    Google Scholar 

  50. 50.

    Rakić, A.D.: Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl. Opt. 34(22), 4755–4767 (1995)

    ADS  Article  Google Scholar 

  51. 51.

    Lemonnier, J.C., Jezequel, G., Thomas, J.: Optical properties in the far UV and electronic structure of indium films. J. Phys. C Solid State Phys. 8(17), 2812–2818 (1975)

    ADS  Article  Google Scholar 

  52. 52.

    Palik, E.D.: Handbook of Optical Constants of Solids. Academic press, San Diego (1997)

    Google Scholar 

  53. 53.

    Chan, G.H., Zhao, J., Schatz, G.C., Van Duyne, R.: Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112(36), 13958–13963 (2008)

    Article  Google Scholar 

  54. 54.

    Langhammer, C., Schwind, M., Kasemo, B., Zoric, I.: Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)

    ADS  Article  Google Scholar 

  55. 55.

    Knight, M.W., King, N.S., Liu, L., Everitt, H.O., Nordlander, P., Halas, N.J.: Aluminum for plasmonics. ACS Nano 8(1), 834–840 (2014)

    Article  Google Scholar 

  56. 56.

    Taguchi, A., Saito, Y., Watanabe, K., Yijian, S., Kawata, S.: Tailoring plasmon resonances in the deep-ultraviolet by size-tunable fabrication of aluminum nanostructures. Appl. Phys. Lett. 101(8), 081110 (2012)

    ADS  Article  Google Scholar 

  57. 57.

    Ekinci, Y., Solak, H.H., Löffler, J.F.: Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 104(8), 083107 (2008)

    ADS  Article  Google Scholar 

  58. 58.

    Dörfer, T., Schmitt, M., Popp, J.: Deep-UV surface-enhanced Raman scattering. J. Raman Spectrosc. 38(11), 1379–1382 (2007)

    ADS  Article  Google Scholar 

  59. 59.

    Taguchi, A., Hayazawa, N., Furusawa, K., Ishitobi, H., Kawata, S.: Deep-UV tip-enhanced Raman scattering. J. Raman Spectrosc. 40(9), 1324–1330 (2009)

    ADS  Article  Google Scholar 

  60. 60.

    Jha, S.K., Ahmed, Z., Agio, M., Ekinci, Y., Löffler, J.F.: Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc. 134(4), 1966–1969 (2012)

    Article  Google Scholar 

  61. 61.

    Kumamoto, Y., Taguchi, A., Honda, M., Watanabe, K., Saito, Y., Kawata, S.: Indium for deep-ultraviolet surface-enhanced resonance Raman scattering. ACS Photonics 1(7), 598–603 (2014)

    Article  Google Scholar 

  62. 62.

    Evertsson, J., Bertram, F., Zhang, F., Rullik, L., Merte, L.R., Shipilin, M., Soldemo, M., Ahmadi, S., Vinogradov, N., Carlà, F., Weissenrieder, J., Göthelid, M., Pan, J., Mikkelsen, A., Nilsson, J.O., Lundgren, E.: The thickness of native oxides on aluminum alloys and single crystals. Appl. Surf. Sci. 349, 826–832 (2015)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Atsushi Taguchi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taguchi, A. Plasmonic tip for nano Raman microcopy: structures, materials, and enhancement. Opt Rev 24, 462–469 (2017).

Download citation


  • Tip-enhanced Raman scattering (TERS)
  • Nano-imaging microscopy
  • Surface plasmons
  • Optical antenna
  • Deep ultraviolet (DUV)
  • Near-field scanning optical microscope (NSOM)