Optical Review

, Volume 24, Issue 3, pp 449–461 | Cite as

Generation of the determined vectorial vortex beams by use of an achromatic axially symmetric waveplate

  • Toshitaka Wakayama
  • Takeshi Higashiguchi
  • Yukitoshi Otani
Special Section: Invited Review Paper Optics Awards 2016 for excellent papers
Part of the following topical collections:
  1. Optics Awards 2016 for excellent papers

Abstract

We review the generation of the determined vectorial vortex beams in the terahertz (THz) beams at frequencies of 0.16 and 0.36 THz, and intense middle infrared pulsed beam at 10.6 µm by use of an achromatic axially symmetric waveplate. It is possible for the method to decide the polarization states of incident beam with arbitrary polarization, and to determine the angular variant polarization after converting into vectorial vortex beams, instantaneously. This approach could apply to not only obtain the polarization states of the beams in the broadband spectral regions from ultraviolet to THz but also generate the determined vectorial vortex beams.

Keywords

Determination of polarization states Vectorial vortex beam Achromatic axially symmetric waveplate 

References

  1. 1.
    Hur, N., Park, S., Sharma, P.A., Ahn, J.S., Guh, S., Cheong, S.-W.: Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Patterson, D., Schnell, M., Doyle, J.M.: Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 475, 475 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Wiersema, K., Covino, S., Toma, K., van der Horst, A.J., Varela, K., Min, M., Greiner, J., R.L.C. Starling, Tanvir, N.R., R.A.M.J. Wijers, Campana, S., Curran, P.A., Fan, Y., J.P.U. Fynbo, Gorosabel, J., Gomboc, A., Gotz, D., Hjorth, J., Jin, Z.P., Kobayashi, S., Kouveliotou, C., Mundell, C., O’Brien, P.T., Pian, E., Rowlinson, A., Russell, D.M., Salvaterra, R., di Serego Alighieri, S., Tagliaferri, G., Vergani, S.D., Elliott, J., Farina, C., Hartoog, O.E., Karjalainen, R., Klose, S., Knust, F., Levan, A.J., Schady, P., Sudilovski, V., Willingale, R.: Circular polarization in the optical afterglow of GRB 121024A. Nature 509, 201 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Henry, E.R., Hochstrasser, R.M.: Molecular dynamics simulations of fluorescence polarization of tryptophans in myoglobin. Proc. Natl. Acad. Sci. USA 84, 6142 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Tang, Y., Cohen, A.E.: Enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Donné, A.J.H., Graswinckel, M.F., Cavinato, M., Giudicotti, L., Zilli, E., Gil, C., Koslowski, H.R., McCarthy, P., Nyhan, C., Prunty, S., Spillane, M., Walker, C.: Poloidal polarimeter for current density measurements in ITER. Rev. Sci. Instrum 75, 4694 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    Bonmarin, M., Helbing, J.: Polarization control of ultrashort mid-IR laser pulses for transient vibrational circular dichroism measurements. Chirality 21, E298 (2009)CrossRefGoogle Scholar
  8. 8.
    Eerdenbrugh, B.V., Taylor, L.S.: Application of mid-IR spectroscopy for the characterization of pharmaceutical systems. Int. J. Pharm. 417, 3 (2011)CrossRefGoogle Scholar
  9. 9.
    Middleton, C.T., Strasfeld, D.B., Zanni, M.T.: Polarization shaping in the mid-IR and polarization-based balanced heterodyne detection with application to 2D IR spectroscopy. Opt. Express. 17, 14526 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Ahmed, M.A., Schulz, J., Voss, A., Parriaux, O., Pommier, J.-C., Graf, T.: Radially polarized 3 kW beam from a CO2 laser with an intracavity resonant grating mirror. Opt. Lett. 32, 1824 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Endo, M.: Azimuthally polarized 1 kW CO2 laser with a triple-axicon retroreflector optical resonator. Opt. Lett. 33, 1771 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Serebryakov, V.A., Boĭko, É.V., Petrishchev, N.N., Yan, A.V.: Medical applications of mid-IR lasers. Problems and prospects. J. Opt. Technol. 77, 6 (2010)CrossRefGoogle Scholar
  13. 13.
    Vogel, A., Venugopalan, V.: Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577 (2003)CrossRefGoogle Scholar
  14. 14.
    Brixner, T., Krampert, G., Pfeifer, T., Selle, R., Gerber, G., Wollenhaupt, M., Graefe, O., Horn, C., Liese, D., Baumert, T.: Quantum control by ultrafast polarization shaping. Phys. Rev. Lett. 92, 208301 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    Sato, M., Higuchi, T., Kanda, N., Konishi, K., Yoshioka, K., Suzuki, T., Misawa, K., Kuwata-Gonokami M.: Terahertz polarization pulse shaping with arbitrary field control. Nat. Photon. 7, 724 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Li, Z., Rupinski, S., Zetterberg, M., Alwahabi, Z.T., Aldén, M.: Mid-infrared polarization spectroscopy of polyatomic molecules: detection of nascent CO2 and H2O in atmospheric pressure flames. Chem. Phys. Lett. 407, 243 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    Kawasaki, T., Fujioka, J., Imai, T., Torigoe, K., Tsukiyama, K.: Mid-infrared free-electron laser tuned to the amide I band for converting insoluble amyloid-like protein fibrils into the soluble monomeric form. Lasers Med. Sci. 29, 1701 (2014)CrossRefGoogle Scholar
  18. 18.
    Kawasaki, T., Imai, T., Tsukiyama, K.: Use of a mid-infrared free-electron laser (MIR-FEL) for dissecting the amyloid fibril structure of a peptide. J. Anal. Sci. Methods Instrum. 4, 9 (2014)Google Scholar
  19. 19.
    Zhan, Q.: Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photonics 1, 1 (2009)CrossRefGoogle Scholar
  20. 20.
    Dorn, R., Quabis, S., Leuchs, G.: Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Nanni, E.A., Haung, W.R., Hong, K.-H., Ravi, K., Fallashi, A., Moriena, G., Miller, R.J.D., Kärtner, F.X.: Terahertz-driven linear electron acceleration. Nat. Commun. 6, 8486 (2015)CrossRefGoogle Scholar
  22. 22.
    Miyamoto, K., Suizu, K., Akiba, T., Omatsu, T.: Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate. Appl. Phys. Lett. 104, 261104 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Imai, R., Kanda, N., Higuchi, T., Konishi, K., Kuwata-Gonokami, M.: Generation of broadband terahertz vortex beams. Opt. Lett. 39, 3714 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Xie, Z., Wang, X., Ye, J., Feng, S., Sun, W., Akalin, T., Zhang, Y.: Spatial terahertz modulator. Sci. Rep. 3, 3347 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Milione, G., Sztul, H.I., Nolan, D.A., Alfano, R.R.: Higher-order poincaré sphere, stokes parameters, and the angular momentum of light. Phys. Rev. Lett. 107, 053601 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Milione, G., Evans, S., Nolan, D.A., Alfano, R.R.: Higher order Pancharatnam–Berry phase and the angular momentum of light. Phys. Rev. Lett. 108, 190401 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    K.P. Singh, M. Kumar: Electron acceleration by a radially polarized laser pulse during ionization of low density gases. Phys. Rev. ST Accel. Beams 14, 030401 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Donato, M.G., Vasi, S., Sayed, R., Jones, P.H., Bonaccorso, F., Ferrari, A.C., Gucciardi, P.G., Maragò, O.M.: Optical trapping of nanotubes with cylindrical vector beams. Opt. Lett. 37, 3381 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Hell, S.W., Wichmann, J.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780 (1994)ADSCrossRefGoogle Scholar
  30. 30.
    Kozawa, Y., Hibi, T., Sato, A., Horanai, H., Kurihara, M., Hashimoto, N., Yokoyama, H., Nemoto, T. Sato, S.: Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam. Opt. Express. 19, 15947 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Purnapatra, S.B., Bera, S., Mondal, P.P.: Spatial filter based bessel-like beam for improved penetration depth imaging in fluorescence microscopy. Sci. Rep. 2, 692 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Zeng, J., Wang, X., Sun, J., Pandey, A., Cartwright, A.N., Litchinitser, N.M.: Manipulating complex light with metamaterials. Sci. Rep. 3, 2826 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Kruk, S., Hopkins, B., Kravchenko, I.I., Miroshnichenko, A., Neshev, D.N., Kivshar, Y.S.: Broadband highly efficient dielectric metadevices for polarization control. APL Photonics 1, 030801 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Ito, S., Yamauchi, H., Tamura, M., Hidaka, S., Hattori, H., Hamada, T., Nishida, K., Tokonami, S., Itoh, T., Miyasaka, H., Iida, T.: Selective optical assembly of highly uniform nanoparticles by doughnut-shaped beams. Sci. Rep. 3, 3047 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Watanabe, M., Juman, G., Miyamoto, K., Omatsu, T.: Light induced conch-shaped relief in an azo-polymer film. Sci. Rep. 4, 4281 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    Toyoda, K., Miyamoto, K., Aoki, N., Morita, R., Omatsu, T.: Using optical vortex to control the chirality of twisted metal nanostructures. Nano Lett. 12, 3645 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Stalder, M., Schadt, M.: Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21, 1948 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    McEldowney, S.C., Shemo, D.M., Chipman, R.A., Smith, P.K.: Creating vortex retarders using photoaligned liquid crystal polymers. Opt. Lett. 33, 134 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Beresna, M., Gecevičius, M., Kazansky, P.G., Gertus, T.: Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl. Phys. Lett. 98, 201101 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Niv, A., Biener, G., Kleiner, V., Hasman, E.: Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express. 14, 4208 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    Wakayama, T., Komaki, K., Otani, Y., Yoshizawa, T.: Achromatic axially symmetric wave plate. Opt. Express. 20, 29260 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Wakayama, T., Higashiguchi, T., Oikawa, H., Sakaue, K., Washio, M., Yonemura, M., Yoshizawa, T., Tyo, J.S., Otani, Y.: Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis. Sci. Rep. 5, 9416 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Wakayama, T., Rodríguez-Herrera, O.G., Tyo, J.S., Otani, Y., Yonemura, M., Yoshizawa, T.: Generation of achromatic, uniform-phase, radially polarized beams. Opt. Express. 22, 3306 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    Wakayama, T., Oikawa, H., Sasanuma, A., Arai, G., Fujii, Y., Dinh, T.H., Higashiguchi, T., Sakaue, K., Washio, M., Miura, T., Takahashi, A., Nakamura, D., Okada, T., Yonemura, M., Otani, Y.: Generation of radially polarized high energy mid-infrared optical vortex by use of a passive axially symmetric ZnSe waveplate. Appl. Phys. Lett. 107, 081112 (2015)ADSCrossRefGoogle Scholar
  45. 45.
    Wakayama, T., Higashiguchi, T., Otani, Y.: Passive control of a high-energy carbon dioxide-pulsed vectorial vortex beam. SPIE Newsroom (2016). doi:10.1117/2.1201512.006281
  46. 46.
    Hornstein, M.K., Bajaj, S.V., Griffin, R.G., Temkin, R.J.: Continuous-wave operation of a 460-GHz second harmonic Gyrotron oscillator. IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc. 34, 524 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Zaks, B., Liu, R.B., Sherwin, M.S.: Experimental observation of electron–hole recollisions. Nature 483, 580 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Thangaraj, J.C.T., Thurman-Keup, R., Ruan, J., Johnson, A.S., Lumpkin, A.H., Santucci, J.: Experimental studies on coherent synchrotron radiation at an emittance exchange beam line. Phys. Rev. ST Accel. Beams 15, 110702 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    Ferrari, E., Allaria, E., Buck, J., De Ninno, G., Diviacco, B., Gauthier, D., Giannessi, L., Glaser, L., Huang, Z., Ilchen, M., Lambert, G., Lutman, A.A., Mahieu, B., Penco, G., Spezzani, C., Viefhaus, J.: Single shot polarization characterization of XUV FEL pulses from crossed polarized undulators. Sci. Rep. 5, 13531 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    Mukai, Y., Hirori, H., Yamamoto, T., Kageyama, H., Tanaka, K.: Nonlinear magnetization dynamics of antiferromagnetic spin resonance induced by intense terahertz magnetic field. New J. Phys. 18, 013045 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    Azzam, R.M.A., Bashara, N.M. (eds.): Ellipsometry and polarized light (1987)Google Scholar
  52. 52.
    Oka, K., Kato, T.: Spectroscopic polarimetry with a channeled spectrum. Opt. Lett. 24, 1475 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    Morris, C.M., Aguilar, R.V., Stier, A.V., Armitage, N.P.: Polarization modulation time-domain terahertz polarimetry. Opt. Express. 20, 12303 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    Fresnel, A. : Mémoire sur les modifications que la réflexion imprime à la lumière polarisée. Mémoires de l’Académie des sciences de l’Institute de France 11, 373 (1832)Google Scholar
  55. 55.
    Goldstein, D.H. (ed.): Polarized, light third edition. CRC Press, Boca Raton (2011)Google Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Toshitaka Wakayama
    • 1
  • Takeshi Higashiguchi
    • 2
    • 4
  • Yukitoshi Otani
    • 3
    • 4
  1. 1.School of Biomedical EngineeringSaitama Medical UniversityHidakaJapan
  2. 2.Department of Electrical and Electronic Engineering, Faculty of EngineeringUtsunomiya UniversityUtsunomiyaJapan
  3. 3.Department of Optical Engineering, Graduate School of EngineeringUtsunomiya UniversityUtsunomiyaJapan
  4. 4.Center for Optical Research and Education (CORE)Utsunomiya UniversityUtsunomiyaJapan

Personalised recommendations