Optical Review

, Volume 24, Issue 3, pp 297–300 | Cite as

Plasmon coupling in the double-sector structure

  • Jianxia Qi
  • Runcai Miao
  • Jun Dong
Regular Paper


A silver nanostructure consisting of double sectors is proposed in this paper. In addition, the plasmon resonance and electric field enhancement have been investigated theoretically. It is found that, in this structure, the multiple resonances produce, which is tunable by the parameter of the structure. The localized electromagnetic fields can be produced at the tips of the structure. In addition, the enhanced electromagnetic fields can be observed between the sectors in a wide scale at the lower energy peak. The result of the investigation has great significance for the production of practical nanostructures and the improvement of possible applications.


Plasmon resonance Plasmon coupling Electric field enhancement 



This work was supported by the National Science Foundation of China (No. 11304247), Natural Science Basis Research Plan in Shaanxi Province of China (No. 2016GY-029), Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars (No. 2015KJXX-40), and The Natural Science Foundation of Shaanxi Educational Committee (Program No. 15JK1668).


  1. 1.
    Su, K.-H., Wei, Q.-H., Zhang, X., Mock, J.J., Smith, D.R., Schultz, S.: Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3(8), 1087–1090 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Verellen, N., Van Dorpe, P., Huang, C.J., Lodewijks, K., Vandenbosch G.A.E., Lagae, L., Moshchalkov, V.V.: Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 11(2), 391–397 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    Yang, Z.J., Zhang, Z.S., Zhang, W., Hao, Z.H., Wang, Q.Q.: Twinned Fano interferences induced by hybridized plasmons in Au–Ag nanorod heterodimers. Appl. Phys. Lett. 96, 131113 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Funston, A.M., Novo, C., Davis, T.J., Mulvaney, P.: Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9, 1651–1658 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Yun, B.F., Hu, G.H., Cong, J.W., Cui, Y.P.: Fano resonances induced by strong interactions between dipole and multipole plasmons in tshaped nanorod dimer. Plasmonics 9, 691–698 (2014)CrossRefGoogle Scholar
  6. 6.
    Dong, J., Zhang, Z., Zheng, H., Sun, M.: Recent progress on plasmon-enhanced fluorescence. Nanophotonics 4(1), 472–490 (2015)CrossRefGoogle Scholar
  7. 7.
    Sun, M., Zhang, Z., Wang, P., Li, Q., Ma, F., Xu, H.: Remotely excited Raman optical activity using chiral plasmon propagation in Ag nanowires. Light Sci. Appl. 2, e112 (2013)CrossRefGoogle Scholar
  8. 8.
    Esteban, R., Vogelgesang, R., Dorfmüller, J., Dmitriev, A., Rockstuhl, C.: Direct near-field optical imaging of higher order plasmonic resonances. Nano Lett. 8(10), 3155–3159 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Vasconcelos, T.L., Archanjo, B.S., Fragneaud, B., Oliveira, B.S., Riikonen, J.: Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9(6):6297–6304 (2015)CrossRefGoogle Scholar
  10. 10.
    Fu, Y.H., Zhang, J.B., Yu, Y.F., Luk’yanchuk, B.: Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6, 5130–5137 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhou, L., Fu, X.F., Yu, L., Zhang, X., Yu, X.F., Hao, Z.H.: Crystal structure and optical properties of silver nanorings. Appl. Phys. Lett. 94, 153102 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Bukasov, R., Shumaker-Parry, J.S.: Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett. 7(5), 1113–1118 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Liu, T., Li, J., Gao, F., Han, Q., Liu, S.: Generation and manipulation of higher order Fano resonances in plasmonic nanodisks with a built-in missing sectorial slice. EPL 104, 47009 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Wang, H., Wu, Y., Lassiter, B., Nehl, C.L., Hafner, J.H., Nordlander, P., Halas, N.J.: Symmetry breaking in individual plasmonic nanoparticles. Proc. Natl Acad. Sci. USA 103, 10856–10860 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Brown, L.V., Sobhani, H., Lassiter, J.B., Nordlander, P., Halas, H.J., Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4, 819–832 (2010)CrossRefGoogle Scholar
  16. 16.
    Sonnefraud, Y., Verellen, N., Sobhani, H., Vandenbosch, G.A.E., Moshchalkov, V.V., Dorpe, P.V., Nordlander, P., Maier, S.A.: Experimental realization of subradiant, superradiant: and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 3, 1664–1670 (2010)CrossRefGoogle Scholar
  17. 17.
    Fang, Y., Sun, M.: Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl. 4, e294 (2015)CrossRefGoogle Scholar
  18. 18.
    Wang, C., Wu, Y., Zheng, H., Li, C., Li, J.: Generation of high-order resonance modes in visible and near-infrared range from square ring–disk system. Plasmonics 10, 1915–1920 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, 1 T. Q. Jia, 1, a_ D. H. Feng, and Z. Z. Xu2,Quadrupole plasmon resonance mode in nanocrescent/nanodisk structure:Local field enhancement and tunability in the visible light region. Appl. Phys. Lett., 2011,98:163110Google Scholar
  20. 20.
    Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anChina
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anChina
  3. 3.School of Electronic EngineeringXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations