Optical Review

, Volume 24, Issue 3, pp 291–296 | Cite as

Analysis of thermal property in hollow-core polarization maintaining photonic crystal fibers

  • Chen-ge Wang
  • Xuan She
  • Kan Chen
  • Zhe Yang
  • Xing-fan Chen
  • Teng-chao Huang
  • Cheng Liu
Regular Paper
  • 218 Downloads

Abstract

We study the thermal-induced variance of effective refractive indices (ERIs) and birefringence in several kinds of polarization maintaining fibers (PMF) and carry out numerical simulations by utilizing the finite element method (FEM). Responses under varying temperatures in these fibers are analyzed thoroughly. According to our computational results, hollow-core photonic crystal fibers (HC-PCFs) exhibit much more stable temperature-dependent ERIs and birefringence among these PMFs.

Keywords

Thermo-optic Photoelastic Photonic crystal fiber Polarization maintaining Effective refractive index 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61601405, the Shanghai Aerospace Science and Technology Innovation Fund under Grant No. SAST2016086, the Joint Fund of Equipment Pre-research and Ministry of Education under Grant No. 6141A02022310.

References

  1. 1.
    Liao, C.R., Hu, T.Y., Wang D.N.: Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing. Opt. Express, 20(20), 22813–22818 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    Rong, Q., Qiao, X., Du, Y. et al.: In-fiber quasi-Michelson interferometer with a core–cladding-mode fiber end-face mirror. Appl. Optics, 52(7), 1441–1447 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Zhou, J., Liao, C., Wang, Y. et al: Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer. Opt. Express, 22(2), 1680–1686 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Zou, W., He, Z., Hotate, K.: Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber. Opt. Express, 17(3), 1248–1255(2009)ADSCrossRefGoogle Scholar
  5. 5.
    Chung, S., Kim, J., Yu, B. A. et al.: A fiber Bragg grating sensor demodulation technique using a polarization maintaining fiber loop mirror. IEEE. Photonic. Tech. L, 13(12), 1343–1345 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Liu, Z., Liu, Y., Du, J., et al.: Switchable triple-wavelength erbium-doped fiber laser using a single fiber Bragg grating in polarization-maintaining fiber. Opt. Commun, 279(1), 168–172 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Knight, J.C., Birks, T.A., Russell, P.S.J. et al.: Properties of photonic crystal fiber and the effective index model. J. Opt. Soc. Am. A, 15(3), 748–752 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    Knight, J.C., Birks, T. A., Russell, P.S.J. et al.: All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett, 21(19), 1547–1549 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, Y., Wang, D.N., Liao, C. R. et al.: Temperature-insensitive refractive index sensing by use of micro Fabry–Pérot cavity based on simplified hollow-core photonic crystal fiber. Opt. Lett, 38(3), 269–271 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Kim, D.H., Kang, J.: Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express, 12(19), 4490–4495 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Dong, X., Tam, H.Y., Shum, P.: Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer. Appl. Phys. Lett, 90(15), 151113 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Dong, B., Zhou, D.P., Wei, L.: Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors. J. Lightwave. Technol, 28(7), 1011–1015 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Mindlin, R.D., Goodman, L. E.: The optical equations of three-dimensional photoelasticity. J. Appl. Phys, 20(1), 89–95 (1949)ADSCrossRefMATHGoogle Scholar
  14. 14.
    Philippoff, W.: Stress-optical analysis of fluids. Ind. Eng Chem 51(7), 883–884 (1959)CrossRefGoogle Scholar
  15. 15.
    Sasaki, Y., Hosaka, T., Horiguchi, M., Noda, J.: Design and fabrication of low-loss and low-crosstalk polarization-maintaining optical fibers. J. Lightwave. Technol. 4(8), 1097–1102 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    Suzuki, K., Kubota, H., Kawanishi, S., Tanaka, M., Fujita, M.: Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express 9(13), 676–680 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    Kan C., Chen-ge W., Jin-fang W., et al.: A type of centered porous-defected polarization maintaining photonic crystal fiber. J. Optoelectron. Laser 26(7), 1406–1411 (2015)Google Scholar
  18. 18.
    Chen, K, Wang,C., Hu, H., et al.: A single-mode polarization maintaining hollow core photonic bandgap fiber. IEEE Photonics Technol. Lett. 28(22), 2617–2620 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    Wong, C.P, Bollampally, R.S.: Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. J. Appl. Polym. Sci, 74(14), 3396–3403 (1999)CrossRefGoogle Scholar
  20. 20.
    Ifuku, S., Morooka, S., Nakagaito, A. N., Morimoto, M., Saimoto, H.: Preparation and characterization of optically transparent chitin nanofiber/(meth) acrylic resin composites. Green. Chem, 13(7), 1708–1711 (2011)CrossRefGoogle Scholar
  21. 21.
    Bertholds, A., Dandliker, R.: Determination of the individual strain-optic coefficients in single-mode optical fibres. J. Lightwave. Technol. 6(1), 17–20 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Mousavi, L., Sabaeian, M., Nadgaran, H.: Numerical modelling of self-heating effects on guiding modes of high-power photonic crystal fibre lasers. Lithuanian. J. Phys. 53(2) (2013)Google Scholar
  23. 23.
    Li, L, Zhang, D, Wen, X, et al.: FFPI-FBG hybrid sensor to measure the thermal expansion and thermo-optical coefficient of a silica-based fiber at cryogenic temperatures. Chin. Optics Lett. 13(10), 100601 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Tohge, N, Moore, G.S, Mackenzie, J. D.: Structural developments during the gel to glass transition. J. Non-Cryst. Solids 63(1), 95–103 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Palik, E.D.: Handbook of optical constants of solids, vol. 3. Academic Press, San Diego, CA (1998)Google Scholar
  26. 26.
    Primak, W, Post, D.: Photoelastic constants of vitreous silica and its elastic coefficient of refractive index. J. Appl. Phys, 30(5), 779–788 (1959)ADSCrossRefGoogle Scholar
  27. 27.
    Ghosh, G.: Handbook of optical constants of solids: Handbook of Thermo-optic coefficients of optical materials with applications. Academic Press, Boston, MA (1998)Google Scholar
  28. 28.
    Digonnet, M, Blin, S, Kim, H K, et al.: Sensitivity and stability of an air-core fibre-optic gyroscope. Meas. Sci. Technol., 18(10), 3089 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Song, N, Sun, Z, Song, J, et al.: Analysis of shupe effect in polarization-maintaining photonic crystal fiber-optic gyroscope. Optical Rev., 21(3), 276–279 (2014)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.College of optical Science and EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations