Advertisement

Optical Review

, Volume 24, Issue 3, pp 278–290 | Cite as

Parametric blur estimation for blind restoration of atmospherically degraded images: Class G

  • Weizhe Gao
  • Xi Zhao
  • Jianhua Zou
  • Yikang Yang
  • Rong Xu
  • Rongzhi Zhang
  • Xu Xuebin
Regular Paper

Abstract

Iterative methods are typically utilized for blind image restoration (BIR); however, they are relatively slow, uncertain, and occasionally ill-behaved. This study presents a non-iterative algorithm to estimate the parameters of point spread functions (PSFs), particularly, Class G. We propose a curve model to approximate the normalized spectrum amplitude of the original image in accordance with the decay law of the natural image spectrum. The blur PSF is estimated by comparing the original image spectrum with the degraded one. Then, the image is restored by applying the estimated PSF and the Wiener filter. Experimental results demonstrate that the proposed algorithm can obtain a more accurate PSF and reduce ringing artifacts compared with the existing algorithms. The quality of the restored images is enhanced significantly.

Keywords

Blind image restoration Point spread function estimation Atmospheric turbulence Power law Ringing artifacts 

Notes

Acknowledgements

The authors would like to thank Goldstein for sharing his code of the work. This work is funded by the National Natural Science Foundation of China (61303121), the Ministry of Education & China Mobile Joint Research Fund Program (MCM20160302), the Zhongxing Research Grant (3212000210), the National Key Research and Development of China (2016YFB0501300, 2016YFB0501301), and the Major Science and Technology Foundation in Guangdong Province of China (No. 2015B010104002).

References

  1. 1.
    Yitzhaky Y, Dror I, Kopeika N S.: Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer functions. Opt. Eng. 36(11), 3064–3072(1997)Google Scholar
  2. 2.
    Chen E, Haik O, Yitzhaky Y.: Classification of moving objects in atmospherically degraded video. Opt. Eng. 51(10), 101710, 14 pages (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Chaudhuri, S., Velmurugan, R., Rameshan, R.: Blind deconvolution methods. Springer International Publishing. (2014)Google Scholar
  4. 4.
    Vera E, Vega M, Molina R, et al.: Iterative image restoration using nonstationary priors. Appl. Optics, 52(10), D102–D110(2013)Google Scholar
  5. 5.
    Wen Chang-li, Xu Rong, Men Tao, et al.: Atmosphere turbulence blurred image restoration based on atmosphere coherent length. Acta Optica Sinica 34(3), 0301002, 8 pages (2014) (in Chinese)CrossRefGoogle Scholar
  6. 6.
    Fish D A, Walker J G, Brinicombe A M, et al.: Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. A 12(1), 58–65 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Dai X.: Non-parametric efficiency estimation using Richardson–Lucy blind deconvolution. Eur. J. Operat. Res. 248(2), 731–739 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kundur D, Hatzinakos D.: A novel blind deconvolution scheme for image restoration using recursive filtering. IEEE Trans. Signal Process. 46(2), 375–390 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Schulz, J. Timothy.: Penalized maximum-likelihood estimation of covariance matrices with linear structure. IEEE Trans. Signal Process. 45(12), 3027–3038 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Richard Holmes, Brandoch Calef, D. Gerwe, et al.: Cramer–Rao bounds for intensity interferometry measurements. Appl. Optics 52(21), 5235–5246 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Pietro Perona, and Jitendra Malik.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  12. 12.
    Liu Jun, Huang Ting-zhu, Selesnic, et al.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232–246 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ao L, Yibing L, Xiaodong Y, et al.: Image restoration with dual-prior constraint models based on Split Bregman. Opt. Rev. 20(6), 491–495 (2013)CrossRefGoogle Scholar
  14. 14.
    Carasso A S.: Direct blind deconvolution. SIAM J. Appl. Math. 61(6), 1980–2007 (2001)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Carasso A S, Bright D S.: APEX method and real-time blind deconvolution of scanning electron microscope imagery. Opt. Eng., 41(10), 2499–2514 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Jianlin Z., Qiheng Z.: Noniterative blind image restoration based on estimation of a significant class of point spread functions. Opt. Eng., 46(7):077005, 8 pages (2007)CrossRefGoogle Scholar
  17. 17.
    Shenghua X., Qiheng Z., Ding S.: The improved image restoration algorithm based on APEX method. Laser Infrared, 32(2), 185–188 (2007) (in Chinese).Google Scholar
  18. 18.
    Yihan L., Chengyu F.: Midfrequency-based real-time blind image restoration via independent component analysis and genetic algorithms. Optical Eng. 50(4), 047004, 10 pages (2011)CrossRefGoogle Scholar
  19. 19.
    Qi G., Hong Z., Kedong W., et al.: Estimation of point spread function for long-exposure atmospheric turbulence-degraded images. Infrared Laser Eng. 43(4), 1327–1331 (2014) (in Chinese).Google Scholar
  20. 20.
    Oliva A, Torralba A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vision 42(3), 145–175 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    D.J. Tolhurst, Y. Tadmor, Tang Chao.: Amplitude spectra of natural images. Ophtal. Physiol. Opt. 12(2):229–232 (1992)CrossRefGoogle Scholar
  22. 22.
    João P. O., Mário A. T. F., Bioucas-Dias J. M.: Parametric blur Estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans. Image Process. 23(1):466–476 (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Feller, W.: An introduction to probability theory and its applications. John Wiley & Sons, (2008)Google Scholar
  24. 24.
    Shi Y., Hong H., Song J., et al.: Blind image deblurring with edge enhancing total variation regularization. Int. Soc. Optics Photonics, 95222B, 7 pages (2015)Google Scholar
  25. 25.
    Balasubramanian, M., Iyengar, S. S., Reynaud, J., et al.: A ringing metric to evaluate the quality of images restored using iterative deconvolution algorithms. Proceeding of the 18 International Conference on Systems Engineering (IEEE ICSEng 05), USA: 483–488 (2005)Google Scholar
  26. 26.
  27. 27.
    Goldstein, A., Fattal, R.: Blur-kernel estimation from spectral irregularities[C]. European Conference on Computer Vision. Springer Berlin Heidelberg, 2012: 622–635Google Scholar
  28. 28.
    Chan, T. F., Osher, S., Shen, J.: The digital TV filter and nonlinear denoising. IEEE Trans. Image Process. 10(2), 231–241 (2001)ADSCrossRefMATHGoogle Scholar
  29. 29.
  30. 30.

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Weizhe Gao
    • 1
  • Xi Zhao
    • 2
    • 4
  • Jianhua Zou
    • 1
    • 4
  • Yikang Yang
    • 1
  • Rong Xu
    • 3
  • Rongzhi Zhang
    • 3
  • Xu Xuebin
    • 4
  1. 1.Systems Engineering InstituteXi’an Jiaotong UniversityXi’anChina
  2. 2.School of ManagementXi’anChina
  3. 3.State Key Laboratory of Astronautic DynamicsXi’an Satellite Control CenterXi’anChina
  4. 4.Guangdong Shunde Xi’an Jiaotong University AcademyFoshanChina

Personalised recommendations