Advertisement

Optical Review

, Volume 24, Issue 3, pp 260–277 | Cite as

Evaluation of spectral dispersion of optical constants of a-Se films from their normal-incidence transmittance spectra using Swanepoel algebraic envelope approach

  • Mahmoud H. Saleh
  • Nidal M. Ershaidat
  • Mais Jamil A. Ahmad
  • Basim N. Bulos
  • Mousa M. Abdul-Gader Jafar
Regular Paper

Abstract

Spectral dispersions of index of refraction \({n(\lambda )}\) and extinction coefficient \({\kappa (\lambda )}\) of undoped amorphous selenium (a-Se) films of three thicknesses (d ≈ 0.5, 0.75, and 1.0 µm) were evaluated by analyzing experimental room-temperature normal-incidence transmittance-wavelength (\({{T_{{\text{exp}}}}(\lambda )} - \lambda\)) data (λ = 400–1100 µm) of their air-supported {a-Se film/thick glass slide}-stacks using Swanepoel’s transmission envelope theory of uniform films. Above a wavelength \({{\lambda _c}\,\, \approx \,\,640\;{\text{nm}}}\), as-measured \({{T_{{\text{exp}}}}(\lambda )}\,\, - \,\lambda\) spectra display well-resolved maxima and minima, with minor shrinkage in transparent and weak absorption regions (750–1100 nm). Below \({\lambda _{\text{c}}}\), a smeared sharp decline of \({{T_{{\text{exp}}}}(\lambda )}\) with decreasing λ, signifying strong absorption in a-Se films and existence of band-tail localized states. For λ > λ c, the \({n\,(\lambda )}\, - \,\lambda\) data retrieved from algebraic envelope procedures followed a Sellmeier-like dispersion relation, with the best-fit values of high-frequency dielectric constant \({{\varepsilon _\infty }\, \approx \,\,{\text{4.9}}}\), static index of refraction \({{n_{\text{0}}} = n\left( {E\, \to \,{\text{0}}} \right)\,\, \approx \,\,{\text{2.43}}}\), and resonance wavelength \({{\lambda _0}\, \approx \,490\,\,{\text{nm}}}\), which may be assigned to onset of photogeneration in a-Se. Urbach-like dependency of absorption coefficient \({\alpha (h{{\nu }})}\) of a-Se films on photon energy \({h{{\nu }}}\) was realized with an Urbach-tail breadth of 85 meV. All achieved optical parameters were found to be slightly dependent on film thickness. Findings of present algebraic analysis are consistent with reported literature results obtained on the basis of other optical analytical approaches.

Keywords

a-Se Optical constants Transmission envelope method Sellmeier and Wemple–DiDominco dispersion models 

References

  1. 1.
    Kubota, M., Kato, T., Suzuki, S., Maruyama, H., Shidara, K., Tanioka, K., Sameshima, K., Makishima, T., Tsuji, K., Hirai, T., Yoshida, T.: Ultrahigh-sensitivity New Super-HARP camera. IEEE Trans. Broadcasting. 42, 251–258 (1996)CrossRefGoogle Scholar
  2. 2.
    Kasap, S.O.: Handbook of imaging materials. Marcel Dekker Inc, New York (2002)Google Scholar
  3. 3.
    Kasap, S.O., Rowlands, J.A., Tanioka, K., Nathan, A.: Charge Transport in Disordered Solids with Applications in Electronics. Wiley, New Jersey, (2006)Google Scholar
  4. 4.
    Wang, K., Chen, F., Belev, G., Kasap, S., Karim, K.S.: Lateral metal-semiconductor-metal photodetectors based on amorphous selenium. Appl. Phys. Lett. 95, 013505 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Wang, K., Chen, F., Shin, K-W., Allec, N., Karim, K.S.: Lateral amorphous selenium metal-semiconductor-metal photodetector for large-area high-speed indirect-conversion medical imaging applications. Proc. SPIE 7622, 762217 (2010)CrossRefGoogle Scholar
  6. 6.
    Bernede, J.C., Touihri, S., Safoula, G.: Electrical characteristics of an aluminum/amorphous selenium rectifying contact. Solid State Electron. 42, 1775–1778 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Iyayi, S.E., Oberafo, A.A.: Studies on a-Se/n-Si and a-Te/n-Si heterojunctions. J. Appl. Sci. Environ. Mgt. 9, 143 (2005)Google Scholar
  8. 8.
    Seddon, A.B.: Chalcogenide glasses: a review of their preparation, properties and applications. J. Non Cryst solids. 184, 44–50 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Abdul-Gader, M.M., Al-Basha, M.A., Wishah, K.A.: Temperature dependence of DC conductivity of as-deposited and annealed selenium films. Int. J. Electron. 85, 21–41 (1998)CrossRefGoogle Scholar
  10. 10.
    Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystalline Materials. Clarendon Press, Oxford (1979)Google Scholar
  11. 11.
    Kolobov, A.V.: On the origin of p-type conductivity in amorphous chalcogenides. J. Non Crystal. Solids 198–200, 728–731 (1996)CrossRefGoogle Scholar
  12. 12.
    Benkhedir, M.L.: Defect Levels in the Amorphous Selenium Bandgap. PhD Thesis, Katholoieke Universiteit Leuven, Belgium (2006)Google Scholar
  13. 13.
    Grenet, J., Larmagnac, J.P., Michon, P.: Aging and crystallization of evaporated amorphous selenium films. Thin Solid Films. 67, L17–L20 (1980)CrossRefGoogle Scholar
  14. 14.
    Larmagnac, J.P., Grenet, J., Michon, P.: Glass transition temperature dependence on heating rate and on ageing for amorphous selenium films. J. Non Crystal. Solids 45, 157–168 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    Innami, T., Adachi, S.: Structural and optical properties of photocrystallized Se films. Phys. Rev. B. 60, 8284–8289 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Tonchev, D., Kasap, S.O.: Effect of aging on glass transformation measurements by temperature modulated DSC. Mater. Sci. Eng., A. 328, 62–66 (2002)CrossRefGoogle Scholar
  17. 17.
    Tonchev, D., Mani, H., Belev, G., Kostova, I., Kasap, S.: X-ray sensing materials stability: influence of ambient storage temperature on essential thermal properties of undoped vitreous selenium. J. Phys. Conf. Ser. 558, 012007 (2014)CrossRefGoogle Scholar
  18. 18.
    Tan, W.C., Belev, G., Koughia, K., Johanson, R., O’Leary, S.K., Kasap, S.: Optical properties vacuum deposited and chlorine doped a-Se thin films: aging effect. J. Mater. Sci.: Mater. Electron. 18, 429–433 (2007)Google Scholar
  19. 19.
    Navarrete, G., Marquez, H., Cota, L.: Determination of the optical properties of amorphous selenium films by a classical damped oscillator model. Appl. Opt. 29, 2850–2852 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    Solieman, A., Abu-Sehly, A.A.: Modelling of optical properties of amorphous selenium thin films. Physica B. 405, 1101–1107 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Saleh, M.H., Jafar, M.M.A-G., Bulos, B.N., Al-Daraghmeh, T.M.F.: Determination of optical properties of undoped amorphous selenium (a-Se) films by dielectric modeling of their normal-incidence transmittance spectra. Appl. Phys. Res. 6, 10–44 (2014)CrossRefGoogle Scholar
  22. 22.
    Tan, W.C.: Optical properties of amorphous selenium films. MSc Thesis, University of Saskatchewan, Saskatoon, Canada (2006)Google Scholar
  23. 23.
    Nagels, P., Sleeckx, E., Callaerts, R., Marquez, E., Gonzalez, J.M., Bernal-Oliva, A.M.: Optical properties of amorphous Se films prepared by PECVD. Solid State Commun. 102, 539–543 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Jafar, M.M.A-G., Saleh, M.H., Ahmad, M.J.A., Bulos, B.N., Al-Daraghmeh, T.M.F.: Retrieval of optical constants of undoped amorphous selenium films from an analysis of their normal-incidence transmittance spectra using numeric PUMA method. J. Mater. Sci. Mater. Electron. 27, 3281–3291 (2016)CrossRefGoogle Scholar
  25. 25.
    Adachi, H., Kao, K.C.: Dispersive optical constants of amorphous Se1–xTex films. J. Appl. Phys. 51, 6326–6331 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    Tichy, L., Ticha, H., Nagels, P., Sleeckx, E., Callaerts, R.: Optical gap and Urbach edge slope in a-Se. Mater. Lett. 26, 279–283 (1996)CrossRefGoogle Scholar
  27. 27.
    Nagels, P., Sleeckx, E., Callaerts, R., Tichy, L.: Structural and optical properties of amorphous selenium prepared by plasma-enhanced CVD. Solid State Commun. 94, 49–52 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    Innami, T., Miyazaki, T., Adachi, S.: Optical constants of amorphous Se. J. Appl. Phys. 86, 1382–1387 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    Dragoman, D., Dragoman, M.: Optical characterization of solids. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  30. 30.
    Stenzel, O.: The physics of thin film optical spectra: an introduction. Springer, Berlin (2005)Google Scholar
  31. 31.
    Jafar, M.M.A-G.: Comprehensive formulations forthe total normal-incidence optical reflectance and transmittance of thin films laid on thick substrates. European Int. J. Sci. Technol. 2, 214–274 (2013)Google Scholar
  32. 32.
    Theiss, W.: Hard- and Software (Manual) (http://www.mtheiss.com)
  33. 33.
    Klein, J.D., Yen, A., Cogan, S.F.: Determining thin film properties by fitting optical transmittance. J. Appl. Phys. 68, 1825–1830 (1990)ADSCrossRefGoogle Scholar
  34. 34.
    Dobrowolski, J.A., Ho, F.C., Waldorf, A.: Determination of optical constants of thin film coating materials based on inverse synthesis. Appl. Opt. 22, 3191–3200 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    Case, W.E.: Algebraic method for extracting thin-film optical parameters from spectrophotometer measurements. Appl. Opt. 22, 1832–1836 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    Peng, C.H., Desu, S.B.: Modified envelope method for obtaining optical properties of weakly absorbing thin films and its application to thin films Pb(Zr,Ti)O3 solid solutions. J. Am. Ceram. Soc. 77, 929–938 (1994)CrossRefGoogle Scholar
  37. 37.
    Manifacier, J.C., Gasiot, J., Fillard, J.P.: A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instrum. 9, 1002–1004 (1976)ADSCrossRefGoogle Scholar
  38. 38.
    Swanepoel, R.: Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16, 1214–1222 (1983)ADSCrossRefGoogle Scholar
  39. 39.
    Birgin, E.G., Chambouleyron, I., Martinez, J.M.: Estimation of the optical constants and the thickness of thin films using unconstrained optimization. J. Comp. Phys. 151, 862–880 (1999)ADSCrossRefMATHGoogle Scholar
  40. 40.
    Mulato, M., Chambouleyron, I., Birgin, E.G., Martínez, J.M.: Determination of thickness and optical constants of amorphous silicon films from transmittance data. Appl. Phys. Lett. 77, 2133–2135 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    Richards, B.S.: Optical characterization of sputtered silicon thin films for photovoltaic application. MSc. Thesis, University of New South Wales, Australia (1998)Google Scholar
  42. 42.
    Márquez, E., Ramirez-Malo, J.B., Villares, P., Jiménez-Garay, R., Swanepoel, R.: Optical characterization of wedge-shaped thin films of amorphous arsenic trisulphide based only on their shrunk transmission spectra. Thin Solid Films. 254, 83–91 (1995)CrossRefGoogle Scholar
  43. 43.
    Ruíz-Pérez, J.J., González-Leal, J.M., Minkov, D.A., Márquez, E.: Method for determining the optical constants of thin dielectric films with variable thickness using only their shrunk reflection spectra. J. Phys. D Appl. Phys. 34, 2489 (2001)ADSCrossRefGoogle Scholar
  44. 44.
    Márquez, E., Bernal-Oliva, A.M., González-Leal, J.M., Prieto-Alcón, R., Ledesma, A., Jiménez-Garay, R., Mártil, I.: Optical-constant calculation of non-uniform thickness thin films of the Ge10As15Se75 chalcogenide glassy alloy in the sub-band-gap region (0.1–1.8 eV). Mater. Chem. Phys. 60, 231–239 (1999)CrossRefGoogle Scholar
  45. 45.
    Swanepoel, R.: Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E: Sci. Instrum. 17, 896–903 (1984)ADSCrossRefGoogle Scholar
  46. 46.
    McClain, M., Feldman, A., Kahaner, D., Ying, X.: An algorithm and computer program for the calculation of envelope curves. Comput. Phys. 5, 45–48 (1991)ADSCrossRefGoogle Scholar
  47. 47.
    Kukinyi, M., Benkö, N., Grofcsik, A., Jones, W.J.: Determination of the thickness and optical constants of thin films from transmission spectra. Thin Solid Films. 286, 164–169 (1996)ADSCrossRefGoogle Scholar
  48. 48.
    Mulama, A.A., Mwabora, J.M., Oduor, A.O., Muiva, C.C., Muthoka, B., Amukayia, B.N., Mbete, D.A.: Role of bismuth and substrate temperature on the optical properties of some flash evaporated Se100–X BiX glassy system. New J Glass Ceram. 5, 16–24 (2015)CrossRefGoogle Scholar
  49. 49.
    O’Leary, S.K., Johnson, S.R., Lim, P.K.: The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: an empirical analysis. J. Appl. Phys. 82, 3334 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    Wemple, S.H., DiDomenico, M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B. 3, 1338–1351 (1971)ADSCrossRefGoogle Scholar
  51. 51.
    Poelman, D., Smet, P.F.: Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review. J. Phys. D Appl. Phys. 36, 1850–1857 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    Chambouleyron, I., Martínez, J.M.: Optical properties of dielectric and semiconductor thin films in handbook of thin films materials. Academic Press, New York (2001)Google Scholar
  53. 53.
    Ward, L.: The optical constants of bulk materials and films. Institute of Physics Publishing, Bristol (1994)Google Scholar
  54. 54.
    Reitz, J.R., Milford, F.J., Christy, R.W.: Foundation of electromagnetic theory. Addison-Wesley Publishing Company Inc., Boston, (1993)Google Scholar
  55. 55.
    Dressel, M., Grüner, G.: Electrodynamics of solids: optical properties of electrons in matter. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  56. 56.
    Minkov, D.A.: Method for determining the optical constants of a thin film on a transparent substrate. J. Phys. D Appl. Phys. 22, 199–205 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    Born, M., Wolf, E.: Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  58. 58.
    Nichelatti, E.: Complex refractive index of a slab from reflectance and transmittance: analytical solution. J. Opt. A Pure Appl. Opt. 4, 400–403 (2002)ADSCrossRefGoogle Scholar
  59. 59.
    Christman, J.R.: Fundamental of solid state physics. Wiley, New Jersey, (1988)Google Scholar
  60. 60.
    Rogalski, M.S., Palmer, S.B.: Solid State Physics. Gordon and Breach Science Publishers, Philadelphia, (2000)Google Scholar
  61. 61.
    Jellison, G.E., Modine, F.A.: Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69, 371–373 (1996)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  • Mahmoud H. Saleh
    • 1
  • Nidal M. Ershaidat
    • 2
  • Mais Jamil A. Ahmad
    • 3
  • Basim N. Bulos
    • 2
  • Mousa M. Abdul-Gader Jafar
    • 2
  1. 1.Department of Physics and Basic Sciences, Faculty of Engineering TechnologyAl-Balqa′ Applied UniversityAmmanJordan
  2. 2.Physics Department, Faculty of ScienceThe University of JordanAmmanJordan
  3. 3.Leibniz Institute für Analytische Wissenschaften-ISAS e.V.DortmundGermany

Personalised recommendations