Skip to main content
Log in

A new scheme of the time-domain fluorescence tomography for a semi-infinite turbid medium

  • Special Section: Regular Paper
  • Biomedical Imaging and Sensing Conference (BISC2016), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A new scheme for reconstruction of a fluorophore target embedded in a semi-infinite medium was proposed and evaluated. In this scheme, we neglected the presence of the fluorophore target for the excitation light and used an analytical solution of the time-dependent radiative transfer equation (RTE) for the excitation light in a homogeneous semi-infinite media instead of solving the RTE numerically in the forward calculation. The inverse problem for imaging the fluorophore target was solved using the Landweber–Kaczmarz method with the concept of the adjoint fields. Numerical experiments show that the proposed scheme provides acceptable results of the reconstructed shape and location of the target. The computation times of the solution of the forward problem and the whole reconstruction process were reduced by about 40 and 15%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jiang, H.: Diffuse Optical Tomography: Principles and Applications, First edition. CRC Press (2010)

  2. Yamada, Y., Okawa, S.: Diffuse optical tomography: present status ans its future. Opt. Rev. 21(3), 185–205 (2014)

    Article  Google Scholar 

  3. O’Leary, M., Boas, B., Chance, B., Yodh, A.: Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography. Opt. Lett. 20(5), 426–428 (1995)

    Article  ADS  Google Scholar 

  4. O’Leary, M., Boas, B., Li, D., Chance, B., Yodh, A.: Fluorescence lifetime imaging in turbid media. Opt. Lett. 21(2), 158–160 (1996)

    Article  ADS  Google Scholar 

  5. Hall, D., Ma, G., Lesage, F., Wang, Y.: Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium. Opt. Lett. 29(19), 2258–2260 (2004)

    Article  ADS  Google Scholar 

  6. Han, S.-H., Hall, D.: Estimating the depth and lifetime of a fluorescent inclusion in a turbid medium using a simple time-domain optical method. Opt. Lett. 33(9), 1035–1037 (2008)

    Article  ADS  Google Scholar 

  7. Han, S.-H., Hall, D.: Analysis of the fluorescence temporal point-spread function in a turbid medium and its application to optical imaging. J. Biomed. Opt. 13(6), 064038 (2008)

    Article  ADS  Google Scholar 

  8. Martelli, F., Del Bianco, S., Ismaelli, A., Zaccanti, G.: Theory, Solutions, and Software. SPIE, Light Propagation through Biological Tissue and Other Diffusive Media (2010)

  9. Quan, H., Guo, Z.: Fluorescence image reconstruction for optical tomography based on transient radiation transfer equation. In: ASME 2003 International Mechanical Engineering Congress and Exposition, volume Heat Transfer, pp. 399–405 (2003)

  10. Dorn, O., Prieto, K.: From data to images: a shape based approach for fluorescence tomography. In: Science: Image in Action: Proceedings of the 7th International Workshop on Data Analysis in Astronomy, pp. 255–266 (2011)

  11. Klose, A., Ntziachristos, V., Hielscher, A.: The inverse source problem based on the ratidative transfer equation in optical molecular imaging. J. Comput. Phys. 202, 323–345 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Dorn, O.: Numerical Methods in Multidimensional Radiative Transfer, chapter Shape Reconstruction for an Inverse Radiative Transfer Problem Arising in Medical Imaging, pp. 299–309. Springer, Berlin (2009)

    MATH  Google Scholar 

  13. Bal, G.: Inverse transport theory and applications. Inverse Probl. 25(5), 48 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Kaltenbacher, B., Neubauer, A., Scherzer, O.: Iterative Regularization Methods for Nonlinear Ill-Posed Problems. Radon Series on Computational and Applied Mathematics. de Gruyter (2008)

  15. Haltmeier, M., Leião, A., Scherzer, O.: Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Probl. Imaging 1(2), 289–298 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, vol. 375. Mathematics and Its Applications. Kluwer Academic Publishers (2000)

  17. Dorn, O.: A transport-backtransport method for optical tomography. Inverse Probl. 14, 1107–1130 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Zhu, Q., Dehghani, H., Tichauer, K., Holt, R., Vishwanath, K., Leblond, F., Pogue, B.: A three-dimensional finite element model and image reconstruction algorithm for time-domain fluorescence imaging in highly scattering media. Phys. Med. Biol. 56, 7419–7434 (2011)

    Article  Google Scholar 

  19. Kinele, A., Patterson, M.: Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium. J. Opt. Soc. Am. A 14(1), 246–253 (1997)

    Article  ADS  Google Scholar 

  20. Ayyalasomoayajula, K., Yalavarthy, P.: Analytical solutions for diffuse fluorescence spectroscopy/imaging in biological tissues. Part I: zero and extrapolated boundary conditions. J. Opt. Soc. Am. 30(3), 537–552 (2013)

    Article  ADS  Google Scholar 

  21. Martelli, F., Sassaroli, A., Pifferi, A., Torricelli, A., Spinelli, L., Zaccanti, G.: Heuristic green’s function of the time dependent radiative transfer equation for a semi-infinite medium. Opt. Express 15(26), 18168–18175 (2007)

    Article  ADS  Google Scholar 

  22. Simon, E., Foschum, F., Kienle, A.: Hybrid green’s function of the time-dependent radiative transfer equation for anisotropically scattering semi-infinite media. J. Biomed. Opt. 18(1), 015001 (2013)

    Article  ADS  Google Scholar 

  23. Prieto Moreno, K.: Novel mathematical techniques for structural inversion and image reconstruction in medical imaging governed by a transport equation. PhD thesis, The University of Manchester (2015)

  24. Prieto, K., Dorn, O.: Sparsity and level set regularization for diffuse optical tomography using a transport model in 2D. Inverse Probl. 33(1), 014001 (2017)

    Article  ADS  Google Scholar 

  25. Sadoqi, M., Riseborough, P., Kumar, S.: Analytical models for time resolved fluorescence spectroscopy in tissues. Phys. Med. Biol. 46, 2725–2743 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Agency for Medical Research and Development (AMED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goro Nishimura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto, K., Nishimura, G. A new scheme of the time-domain fluorescence tomography for a semi-infinite turbid medium. Opt Rev 24, 242–251 (2017). https://doi.org/10.1007/s10043-017-0309-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0309-z

Keywords

Navigation