Optical Review

, Volume 24, Issue 2, pp 212–218 | Cite as

Fluorescence encoded super resolution imaging based on a location estimation algorithm for high-density fluorescence probes

  • Takahiro Nishimura
  • Hitoshi Kimura
  • Yusuke Ogura
  • Jun Tanida
Special Section: Regular Paper Biomedical Imaging and Sensing Conference (BISC2016), Yokohama, Japan
Part of the following topical collections:
  1. Biomedical Imaging and Sensing Conference (BISC2016), Yokohama, Japan


In this paper, we propose a fluorescence encoded super resolution technique based on an estimation algorithm to determine locations of high-density fluorescence emitters. In our method, several types of fluorescence coded probes are employed to reduce densities of target molecules labeled with individual codes. By applying an estimation algorithm to each coded image, the locations of the high density probes can be determined. Due to multiplexed fluorescence imaging, this approach will provide fast super resolution microscopy. In experiments, we evaluated the performance of the method using probes with different fluorescence wavelengths. Numerical simulation results show that the locations of probes with the density of 200 \(\mu\)m\(^{-2}\), which is a typical membrane-receptor expression level, are determined with acquisition of 16 different coded images.


Fluorescence imaging Super resolution Fluorescence Fluorescence coding Multi-PSF fitting 



This research was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) 16K16408.


  1. 1.
    Huang, B., Bates, M., Zhuang, X.: Super-resolution fluorescence microscopy. Ann. Rev. Biochem. 78(1), 993 (2009)CrossRefGoogle Scholar
  2. 2.
    Rust, M.J., Bates, M., Zhuang, X.: Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793 (2006)CrossRefGoogle Scholar
  3. 3.
    Betzig, E., Patterson, G.H., Sougrat, R., Lind- wasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Manzo, C., van Zanten, T.S., Saha, S., Torreno-Pina, J.A., Mayor, S., Garcia-Parajo, M.F.: PSF decomposition of nanoscopy images via Bayesian analysis unravels distinct molecular organization of the cell membrane. Sci. Rep. 4, 4354 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Holden, S.J., Uphoff, S., Kapanidis, A.N.: DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat. Methods 8(4), 279 (2011)CrossRefGoogle Scholar
  6. 6.
    Mukamel, E.A., Babcock, H., Zhuang, X.: Statistical deconvolution for superresolution fluorescence microscopy. Biophys. J. 102(10), 2391 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Min, J., Vonesch, C., Kirshner, H., Carlini, L., Olivier, N., Holden, S., Manley, S., Ye, J.C., Unser, M.: FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci. Rep. 4, 1 (2014)Google Scholar
  8. 8.
    Zhu, L., Zhang, W., Elnatan, D., Huang, B.: Faster STORM using compressed sensing. Nat. Methods 9(7), 721 (2012)CrossRefGoogle Scholar
  9. 9.
    Babcock, H.P., Moffitt, J.R., Cao, Y., Zhuang, X.: Fast compressed sensing analysis for super-resolution imaging using L1-homotopy. Opt. Express 21(23), 28583 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Komatsuzaki, A., Ohyanagi, T., Tsukasaki, Y., Miyanaga, Y., Ueda, M., Jin, T.: Compact halo-ligand-conjugated quantum dots for multicolored single-molecule imaging of overcrowding GPCR proteins on cell membranes. Small 11(12), 1396 (2015)CrossRefGoogle Scholar
  11. 11.
    Bao, J., Bawendi, M.G.: A colloidal quantum dot spectrometer. Nature 523, 67 (2015)Google Scholar
  12. 12.
    Lu, Y., Zhao, J., Zhang, R., Liu, Y., Liu, D., Goldys, E.M., Yang, X., Xi, P., Sunna, A., Lu, J., Shi, Y., Leif, R.C., Huo, Y., Shen, J., Piper, J.A., Robinson, J.P., Jin, D.: Tunable lifetime multiplexing using luminescent nanocrystals. Nature Photonics 8(1), 32 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Nishimura, T., Ogura, Y., Yamada, K., Ohno, Y., Tanida, J.: Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes. Biomed. Opt. Express 5(7), 2082 (2014)CrossRefGoogle Scholar
  14. 14.
    Agrawal, A., Deo, R., Wang, G.D., Wang, M.D., Nie, S.: Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes. Proc. Natl. Acad. Sci. USA 105(9), 3298 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Kiuchi, T., Higuchi, M., Takamura, A., Maruoka, M., Watanabe, N.: Quantitative super-resolution imaging with qPAINT. Nature Methods 12, 743 (2015)CrossRefGoogle Scholar
  16. 16.
    Stein, I., Schuller, V., Bohm, P., Tinnefeld, P., Liedl, T.: Single-molecule FRET ruler based on rigid DNA origami blocks. ChemPhysChem 12, 689 (2011)CrossRefGoogle Scholar
  17. 17.
    Nishimura, T., Ogura, Y., Tanida, J.: Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold. Appl. Phys. Lett. 101, 233703 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Fujii, R., Nishimura, T., Ogura, Y., Tanida, J.: Nanoscale energy-route selector consisting of multiple photo-switchable fluorescence-resonance-energy-transfer structures on DNA. Opt. Rev. 22, 316 (2015)CrossRefGoogle Scholar
  19. 19.
    Nishimura, T., Fujii, R., Ogura, Y., Tanida, J.: Optically controllable molecular logic circuits. Appl. Phys. Lett. 107, 013701 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2016

Authors and Affiliations

  • Takahiro Nishimura
    • 1
  • Hitoshi Kimura
    • 1
  • Yusuke Ogura
    • 1
  • Jun Tanida
    • 1
  1. 1.Osaka UniversityOsakaJapan

Personalised recommendations