Optical Review

, Volume 23, Issue 5, pp 859–864

Multi-aperture optics as a universal platform for computational imaging

Special Section: Regular Paper The 10th International Conference on Optics-Photonics Design & Fabrication (ODF’16), Weingarten, Germany
  • 141 Downloads
Part of the following topical collections:
  1. The 10th International Conference on Optics-Photonics Design & Fabrication (ODF’16), Weingarten, Germany

Abstract

Computational imaging is a novel imaging framework based on optical encoding and computational decoding. To avoid a heuristic design that depends on the particular problem to be solved, multi-aperture optics is useful as a universal platform for optical encoding. In this paper, the fundamental properties of multi-aperture optics are summarized. Then some examples of interesting functions implemented by multi-aperture optics are explained, together with some effective applications.

Keywords

Multi-aperture optics Compound-eye imaging Computational imaging Image processing Compressive sensing 

References

  1. 1.
    Levoy, M.: Light field and computational imaging. Computer 39(8), 46–55 (2006)CrossRefGoogle Scholar
  2. 2.
    Rasker, R.: Computational cameras: redefining the image. Computer 39(8), 30–38 (2006)CrossRefGoogle Scholar
  3. 3.
    Dowski, E.R., Cathey, W.T.: Extended depth of field through wave-front coding. Appl. Opt. 34, 1859–1866 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Ng, R., Levoy, M., Brédif, M., Duval, G., Horowitz, M., Hanrahan, P.: Light field photography with a hand-held plenoptic camera. Comput. Sci. Tech. Rep. CSTR 2(11), 1–11 (2005)Google Scholar
  5. 5.
    Kuthirummal, S., Nagahara, H., Zhou, C., Nayar, S.K.: Flexible depth of field photography. IEEE Trans. Pattern Anal. Mach. Intell. 33, 58–71 (2011)CrossRefGoogle Scholar
  6. 6.
    Horisaki, R., Fukata, N., Tanida, J.: A compressive active stereo imaging system with random pattern projection. Appl. Phys. Express 5(7), 072501 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Nakamura, T., Horisaki, R., Tanida, J.: Compact wide-field-of-view imager with a designed disordered medium. Opt. Rev. 22, 19–24 (2015)CrossRefGoogle Scholar
  8. 8.
    Horisaki, R., Tanida, J.: Multi-channel data acquisition using multiplexed imaging with spatial encoding. Opt. Express 18, 23041–23053 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bioucas-Dias, J.M., Figueiredo, M.A.T.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Processing 16, 2992–3004 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Jeong, K.-H., Kim, J., Lee, L.P.: Biologically inspired artificial compound eyes. Science 312(5773), 557–561 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Brückner, A., Duparré, J., Leitel, R., Dannberg, P., Bräuer, A., Tünnermann, A.: Thin wafer-level camera lenses inspired by insect compound eyes. Opt. Express 18, 24379–24394 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Tanida, J., Kumagai, T., Yamada, K., Miyatake, S., Ishida, K., Morimoto, T., Kondou, N., Miyazaki, D., Ichioka, Y.: Thin observation module by bound optics (TOMBO): concept and experimental verification. Appl. Opt. 40, 1806–1813 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Plemmons, R.J., Prasad, S., Matthews, S., Mirotznik, M., Barnard, R., Gray, B., Pauca, V.P., Torgersen, T.C., van der Gracht, J., Behrmann, G.: PERIODIC: integrated computational array imaging technology. In: Adaptive optics: analysis and methods/computational optical sensing and imaging/information photonics/signal recovery and synthesis topical meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America), paper CMA1 (2007)Google Scholar
  15. 15.
    Horisaki, R., Ogura, Y., Aino, M., Tanida, J.: Single-shot phase imaging with a coded aperture. Opt. Lett. 39, 6466–6469 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Okutomi, M., Kanade, T.: A multiple-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 15, 353–363 (1993)CrossRefGoogle Scholar
  17. 17.
    Horisaki, R., Kagawa, K., Nakao, Y., Toyoda, T., Masaki, Y., Tanida, J.: Irregular lens arrangement design to improve imaging performance of compound-eye imaging systems. Appl. Phys. Express 3, 022501 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Shogenji, R., Kitamura, Y., Yamada, K., Miyatake, S., Tanida, J.: Multispectral imaging using compact compound optics. Opt. Express 12, 1643–1655 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Akao, Y., Shogenji, R., Tsumura, N., Yamaguchi, M., Tanida, J.: Efficient gonio-imaging of optically variable devices by compound-eye image-capturing system. Opt. Express 19, 3353–3362 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Nakamura, T., Horisaki, R., Tanida, J.: Computational superposition compound eye imaging for extended depth-of-field and field-of-view. Opt. Express 20, 27482–27495 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Tanida, J., Mima, H., Kagawa, K., Ogata, C., Umeda, M.: Application of a compound imaging system to odontotherapy. Opt. Rev. 22, 322–328 (2015)CrossRefGoogle Scholar
  22. 22.
    Tsumura, N., Haneishi, H., Miyake, Y.: Estimation of spectral reflectances from multi-band images by multiple regression analysis. Jpn. J. Opt. 27, 384 (1998). (in Japanese) Google Scholar
  23. 23.
    Rivenson, Y., Stern, A., Javidi, B.: Compressive fresnel holography. J. Display Technol. 6, 506–509 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Marchesini, S., Chapman, H., Hau-Riege, S., London, R., Szoke, A., He, H., Howells, M., Padmore, H., Rosen, R., Spence, J., Weierstall, U.: Coherent X-ray diffractive imaging: applications and limitations. Opt. Express 11, 2344–2353 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    Nakamura, T., Horisaki, R., Tanida, J.: Computational phase modulation in light field imaging. Opt. Express 21, 29523–29543 (2013)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2016

Authors and Affiliations

  1. 1.Department of Information and Physical Sciences, Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan

Personalised recommendations