Skip to main content
Log in

Ultra-narrow interval angular control signal for holographic data storage system

  • Special Section: Regular Paper
  • The 10th International Conference on Optics-Photonics Design & Fabrication (ODF'16), Weingarten, Germany
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A precise and fast method for controlling the reference-beam angle of an angular-multiplexed holographic data storage system (HDSS)—to achieve larger capacity and faster data-transfer rate—is proposed. The reference beam is first controlled by a galvanometer mirror (GM) with an “angular control signal (ACS)” applied to its zero-cross angle (which differs by a certain offset angle from the target angle). The offset angle is then eliminated by referring to the output from a rotary encoder inside the GM, and the optimum angle for the reference beam is obtained. Next, a servo beam is used for the ACS, and the ACS value is obtained as a differential signal between the beam intensities of the diffracted reference beam and the diffracted servo beam. The servo beam is orthogonally polarized in regard to the reference beam and has a slightly different incident angle. A reference-beam angular error lower than 3.3 mdeg was confirmed in simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Coufal, H.J., Psaltis, D., Sincerbox, G.T.: Holographic Data Storage, pp. 10–18. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  2. van Heerden, P.J.: Theory of optical information storage in solids. Appl. Opt. 2, 393 (1963)

    Article  ADS  Google Scholar 

  3. Hong, J.H., McMichael, I., Chang, T.Y., Christian, W., Paek, E.G.: Volume holographic memory systems: techniques and architectures. Opt. Eng. 34, 2193 (1995)

    Article  ADS  Google Scholar 

  4. Mok, F.H.: Angle-multiplexed storage of 5000 holograms in lithium niobate. Opt. Lett. 18, 915 (1993)

    Article  ADS  Google Scholar 

  5. Ashley, J., Bernal, M.-P., Burr, G.W., Coufal, H., Guenther, H., Hoffnagle, J.A., Jefferson, C.M., Marcus, B., Macfarlane, R.M., Shelby, R.M., Sincerbox, G.T.: Holographic data storage. IBM J. Res. Dev. 44, 341 (2000)

    Article  Google Scholar 

  6. Anderson, K., Curtis, K.: Polytopic multiplexing. Opt. Lett. 29, 1402 (2004)

    Article  ADS  Google Scholar 

  7. Horimai, H., Tan, X.: Advanced collinear holography. Opt. Rev. 12, 90 (2005)

    Article  Google Scholar 

  8. Sato, M., Ogasawara, M., Ito, Y., Tanaka, S., Iida, T.: New coaxial interference method for consumer holographic memory. Jpn. J. Appl. Phys. 46, 3850 (2007)

    Article  ADS  Google Scholar 

  9. Tanaka, K., Hara, M., Tokuyama, K., Hirooka, K., Ishioka, K., Fukumoto, A., Watanabe, K.: Improved performance in coaxial holographic data recording. Opt. Express 15, 16196 (2007)

    Article  ADS  Google Scholar 

  10. Shimura, T., Ichimura, S., Fujimura, R., Kuroda, K., Tan, X., Horimai, H.: Analysis of a collinear holographic storage system: introduction of pixel spread function. Opt. Lett. 31, 1208 (2006)

    Article  ADS  Google Scholar 

  11. Shimada, K, Ishii, T., Ide, T., Hughes, S., Hoskins, A., Curtis, K.: High density recording using monocular architecture for 500GB consumer system. Tech. Dig. Optical Data Storage, TuC2 (2009).

  12. Hosaka, M., Ishii, T., Tanaka, A., Koga, S., Hoshizawa, T.: 1 Tbit/inch2 recording in angular-multiplexing holographic memory with constant signal-to-scatter ratio schedule. Jpn. J. Appl. Phys. 52, 09LD01 (2013).

  13. Hosaka, M., Ishii, T., Hoshizawa, T.: Region-divided adaptive equalization for holographic memory. Tech. Dig. Int. Symp. Opt. Mem. Opt. Data Storage, OMB6 (2011).

  14. Ishii, T., Shimada, K., Hughes, S., Hoskins, A., Curtis, K.: Margin allocation for a 500GB holographic memory system using monocular architecture. Tech. Dig. Opt. Data Storage, PD1 (2009)

  15. Nakamura, Y., Shimada, K., Ishii, T., Ishihara, H., Hosaka, M., Hoshizawa, T.: High-density recording method with RLL coding for holographic memory system. Tech. Dig. Int. Symp. Opt. Mem. Opt. Data Storage, OMB5 (2011)

  16. Fujita, T., Horikoshi, H.: Focus sensing method using far-field diffracted waves and Its application to holographic data discs. Jpn. J. Appl. Phys. 48, 03A037 (2009)

    Google Scholar 

  17. Göröcs, Z., Sarkadi, T., Erdei, G., Koppa, P.: Hologram positioning servo for phase-encoded holographic data storage systems. Appl. Opt. 49, 611 (2010)

    Article  ADS  Google Scholar 

  18. Song, H.-C., Kim, N., Kim, D.-H., Lim, S.-Y., Cho, J. H., Yang, H., Park, N.-C., Park, K.-S., Park, Y.-P.: Tracking servo method using reflective optical filter for holographic data storage system. Microsyst Technol, 1057 (2011)

  19. Lee, C.W., Kwak, B.S., Chung, C.C., Tomizuka, M.: Design of the tracking controller for holographic digital data storage. IEEE/ASME Trans. Mechatron. 15, 242 (2010)

    Article  Google Scholar 

  20. Kim, S.-H., Kim, J.H., Lee, Y., Yang, H., Park, J.-Y., Park, K.-S., Park, Y.-P.: Tilt error measurement and compensation method for the holographic data storage system using disturbance observer. IEEE/ASME Trans. Mechatron. 45, 2248 (2009)

    ADS  Google Scholar 

  21. Ayres, M., Hoskins, A., Smith, P.C., Kane, J.: Wobble alignment for angularly multiplexed holograms. Tech. Dig. Int. Symp. Opt. Mem. Opt. Data Storage, ThC01 (2008)

  22. Kim, J.H., Yang, H., Kim, N., Jeong, W., Park, J.B.: Pattern analysis for tilt servo control in holographic data storage system. Microsyst Technol, 1677 (2012)

  23. Usui, T., Ogawa, A., Okano, H., Watanabe, K., Kuroda, K., Tatsuta, S., Kubota, Y.: Temperature compensation servo algorithm for holographic data storage. Jpn. J. Appl. Phys. 49, 08BKD04 (2010).

  24. Kim, N., Junga, K., Kima, K., Yoona, P., Parka, J., Park, J.: A novel angle servo for holographic data storage system. Proc. SPIE 6620 Optical Data Storage 66201M (2007).

  25. Curtis, K., Dhar, L., Hill, A., Wilson, W., Ayres, M.: Holographic Data Storage. Wiley, Chichester, p. 352 (2010)

  26. Coufal, H.J., Psaltis, D., Sincerbox, G.T.: Holographic Data Storage, pp. 42–44. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  27. Curtis, K., Dhar, L., Hill, A., Wilson, W., Ayres, M.: Holographic Data Storage. Wiley, Chichester, pp. 349–350 (2010)

  28. Curtis, K., Dhar, L., Hill, A., Wilson, W., Ayres, M.: Holographic Data Storage. Wiley, Chichester, p. 53 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamazaki, K., Hosaka, M., Yamada, K. et al. Ultra-narrow interval angular control signal for holographic data storage system. Opt Rev 23, 848–858 (2016). https://doi.org/10.1007/s10043-016-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0252-4

Keywords

Navigation