Resolution enhancement of digital laser scanning fluorescence microscopy with a dual-lens optical pickup head

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The resolution of the cell fluorescence image captured by a digital laser scanning microscopy with a modified dual-lens BD-ROM optical pickup head is enhanced by image registration and double sample frequency. A dual objective lens of red (655 nm) and blue (405 or 488 nm) laser sources with numerical apertures of 0.6 and 0.85 is used for sample focusing and position tracking and cell fluorescence image capturing, respectively. The image registration and capturing frequency are based on the address-coded patterns of a sample slide. The address-coded patterns are designed as a string of binary code, which comprises a plurality of base-straight lands and grooves and data-straight grooves. The widths of the base-straight lands, base-straight grooves, and data-straight grooves are 0.38, 0.38, and 0.76 μm, respectively. The numbers of sample signals in the x-direction are measured at every intersection point by intersecting the base intensity of the push–pull signal of the address-coded patterns, which has a minimum spacing of 0.38 μm. After taking a double sample frequency, the resolution of the measured cell fluorescence image is enhanced from 0.38 μm to the diffraction limit of the objective lens.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Weissleder, R., Ntziachristos, V.: Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9, 123 (2003)

    Article  Google Scholar 

  2. 2.

    Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Lippincott-Schwartz, J., Hess, H.F.: Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642 (2006)

    ADS  Article  Google Scholar 

  3. 3.

    Schemelleh, L., Heintzmann, R., Leonhardt, H.: A guide to super-resolution fluorescence microscopy. J. Cell Biol. 190, 165 (2010)

    Article  Google Scholar 

  4. 4.

    Delaney, P.M., Harris, M.R., King, R.G.: Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33, 573 (1994)

    ADS  Article  Google Scholar 

  5. 5.

    Tsai, R.Y., Chen, J.P., Lee, Y.C., Huang, C.C., Huang, T.T., Chiang, H.C., Cheng, C.M., Lo, F.H., Chang, S.L., Weng, K.Y., Chung, L.P., Chen, J.C., Tiao, G.: Position-addressable digital laser scanning point fluorescence microscopy with a Blu-ray disk pickup head. Biom. Opt. Express 5, 417 (2014)

    Article  Google Scholar 

  6. 6.

    Tsai, R.Y., Chen, J.P., Lee, Y.C., Chiang, H.C., Cheng, C.M., Huang, C.C., Huang, T.T., Cheng, C.T., Tiao, G.: Cell depth imaging using a point laser scanning fluorescence microscopy based on an optical disk pickup head. Jpn. J. Appl. Phys. 54, 09MD01 (2015)

    Article  Google Scholar 

  7. 7.

    Kim, K.H., Lee, S.Y., Kim, S., Lee, S.H., Jeong, S.G.: A new DNA chip detection mechanism using optical pick-up actuators. Microsyst. Technol. 13, 1359 (2007)

    Article  Google Scholar 

  8. 8.

    De Luna, G.M.R., Breedijk, R.M.P., Brandt, R.A.J., Zeelenberg, C.H.C., de Jong, B.E., Timmermans, W., Azar, L.N., Hoebe, R.A., Strallinga, S., Manders, E.M.M.: Re-scan confocal microscopy: scanning twice for better resolution. Biomed. Opt. Express 4, 2644 (2013)

    Article  Google Scholar 

  9. 9.

    Antonini, A., Liberale, C., Fellin, T.: Fluorescent layers for characterization of sectioning microscopy with coverslip-uncorrected and water immersion objectives. Opt. Express 22, 14293 (2014)

    ADS  Article  Google Scholar 

  10. 10.

    Jabbour, J.M., Malik, B.H., Olsovsky, C., Cuenca, R., Cheng, S., Jo, J.A., Cheng, Y.S., Wright, J.M., Maitland, K.C.: Optical axial scanning in confocal microscopy using an electrically tunable lens. Biomed. Opt. Express 5, 645 (2014)

    Article  Google Scholar 

  11. 11.

    Zipfel, W.R., Williams, R.M., Webb, W.W.: Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369 (2003)

    Article  Google Scholar 

  12. 12.

    Yang, H.W., Hua, M.Y., Liu, H.L., Tsai, R.Y., Pang, S.T., Hsu, P.H., Tang, H.J., Yen, T.C., Chuang, C.K.: An epirubicin-conjugated nanocarrier with MRI function to overcome lethal multidrug-resistant bladder cancer. Biomaterials 33, 3919 (2012)

    Article  Google Scholar 

  13. 13.

    Galeano Z, J.A., Sandoz, P., Gaiffe, E., Launay, S., Robert, L., Jacquot, M., Hirchaud, F., Pretet, J.L., Mougin, C.: Position-referenced microscopy for live cell culture monitoring. Biomed. Opt. Express 2, 1307 (2011)

    Article  Google Scholar 

  14. 14.

    Barretto, R.P.J., Ko, T.H., Jung, J.C., Wang, T.J., Capps, G., Waters, A.C., Ziv, Y., Attardo, A., Recht, L., Schnitzer, M.J.: Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat. Med. 17, 223 (2011)

    Article  Google Scholar 

  15. 15.

    Gorocs, Z., Ozcan, A.: On-chip biomedical imaging. IEEE Rev. Biomed. Eng. 6, 29 (2013)

    Article  Google Scholar 

  16. 16.

    Fourkas, J.T.: Nanoscale photolithography with visible light. J. Phys. Chem. Lett. 1, 1221 (2010)

    Article  Google Scholar 

  17. 17.

    Gross, H.N., Schott, J.R.: Application of spectral mixture analysis and image fusion techniques for image sharpening. Remote Sens. Environ. 63, 85 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Industrial Technology Research Institute for financial aid under project code F256WA1000. We are also grateful for assistance from members at the Biomedical Devices Research Laboratory in cell cultivation and preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rung-Ywan Tsai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsai, RY., Chen, JP., Lee, YC. et al. Resolution enhancement of digital laser scanning fluorescence microscopy with a dual-lens optical pickup head. Opt Rev 23, 817–823 (2016). https://doi.org/10.1007/s10043-016-0246-2

Download citation

Keywords

  • Fluorescence image
  • Resolution
  • Digital laser scanning microscopy
  • Address-coded pattern
  • Optical pickup head