Skip to main content
Log in

Methods for calculating the vergence of an astigmatic ray bundle in an optical system that contains a freeform surface

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A method using the generalized Coddington equations enables calculating the vergence of an astigmatic ray bundle in the vicinity of a skew ray in an optical system containing a freeform surface. Because this method requires time-consuming calculations, however, there is still room for increasing the calculation speed. In addition, this method cannot be applied to optical systems containing a medium with a gradient index. Therefore, we propose two new calculation methods in this paper. The first method, using differential ray tracing, enables us to shorten computation time by using simpler algorithms than those used by conventional methods. The second method, using proximate rays, employs only the ray data obtained from the rays exiting an optical system. Therefore, this method can be applied to an optical system that contains a medium with a gradient index. We show some sample applications of these methods in the field of ophthalmic optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Stavroudis, O.N.: Simpler derivation of the formulas for generalized ray tracing. J. Opt. Soc. Am. 66, 1330 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  2. Burkhard, D.G., Shealy, D.L.: Simplified formula for the illuminance in an optical system. Appl. Opt. 20, 897 (1981)

    Article  ADS  Google Scholar 

  3. Landgrave, J.E.A., Moya-Cessa, J.R.: Generalized Coddington equations in ophthalmic lens design. J. Opt. Soc. Am. A 13, 1637 (1996)

    Article  ADS  Google Scholar 

  4. Campbell, C.E.: Generalized Coddington equations found via an operator method. J. Opt. Soc. Am. A 23, 1691 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Zhao, C., Burge, J.H.: Generalization of the Coddington equations to include hybrid diffractive surfaces. Proc. SPIE 7652 (2010). doi:10.1117/12.871853

  6. Feder, D.P.: Differentiation of ray-tracing equations with respect to construction parameters of rotationally symmetric optics. J. Opt. Soc. Am. 58, 1494 (1968)

    Article  ADS  Google Scholar 

  7. Alpern, M.: Kinematics of the eye. In: Davson, H. (ed.) THE EYE 2nd Edition, vol. 3, Chapter 3, pp. 13–25. Academic Press, New York (1969)

  8. Shirayanagi, M.: Optical design in consideration of the eye optical system. Kogaku 12, 423 (1983). [in Japanese]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moriyasu Shirayanagi.

Appendix

Appendix

In this Appendix, we will explain transfer equations and refraction equations used for skew ray tracing in an optical system containing a freeform surface and the derivation of their differentiations.

At the end of skew ray tracing, the various physical quantities defined at the beginning of Sect. 3.1 are known. The following relations exist among them:

$$x_{k + 1} = x_{k} + L_{k} X_{k} ,$$
(105)
$$y_{k + 1} = y_{k} + L_{k} Y_{k} ,$$
(106)
$$z_{k + 1} = z_{k} + L_{k} Z_{k} - t_{k} ,$$
(107)
$$\varepsilon_{zk + 1} = \left\{ {1 + \left( {\partial f_{k + 1} /\partial x_{k + 1} } \right)^{2} + \left( {\partial f_{k + 1} /\partial y_{k + 1} } \right)^{2} } \right\}^{ - 1/2} ,$$
(108)
$$\varepsilon_{xk + 1} = - \left( {\partial f_{k + 1} /\partial x_{k + 1} } \right)\varepsilon_{zk + 1} ,$$
(109)
$$\varepsilon_{yk + 1} = - \left( {\partial f_{k + 1} /\partial y_{k + 1} } \right)\varepsilon_{zk + 1} ,$$
(110)
$$\xi_{k + 1} = X_{k} \varepsilon_{xk + 1} + Y_{k} \varepsilon_{yk + 1} + Z_{k} \varepsilon_{zk + 1} ,$$
(111)
$$\mu_{k + 1} = n_{k} /n_{k + 1} ,$$
(112)
$$\xi '_{k + 1} = \left\{ {1 - \mu_{k + 1}^{2} \left( {1 - \xi_{k + 1}^{2} } \right)} \right\}^{1/2} ,$$
(113)
$$g_{k + 1} = \xi '_{k + 1} - \mu_{k + 1} \xi_{k + 1} ,$$
(114)
$$X_{k + 1} = \mu_{k + 1} X_{k} + g_{k + 1} \varepsilon_{xk + 1} ,$$
(115)
$$Y_{k + 1} = \mu_{k + 1} Y_{k} + g_{k + 1} \varepsilon_{yk + 1} ,$$
(116)
$$Z_{k + 1} = \mu_{k + 1} Z_{k} + g_{k + 1} \varepsilon_{zk + 1} .$$
(117)

Equations (105)–(107) are called transfer equations, and Eqs. (115)–(117) are called refraction equations. Those equations mean that an intersection point (x k+1, y k+1, z k+1) of a ray and surface k+1 and the exit direction cosines (X k+1, Y k+1, Z k+1) from surface k+1 are expressed as functions of the following values: the intersection point (x k , y k , z k ) of the ray and surface k; direction cosines (X k , Y k , Z k ); distance between surfaces t k ; refractive indices n k and n k+1 of media anterior and posterior to surface k+1, respectively; and the group of parameters c k , p k , c k+1, and p k+1 that express the shapes of surfaces k and k+1. However, not all those values are independent variables; the following relations must be met, as well:

$$z_{k} = f_{k} \left( {x_{k} ,y_{k} ;c_{k} ,\varvec{p}_{k} } \right),$$
(118)
$$z_{k + 1} = f_{k + 1} \left( {x_{k + 1} ,y_{k + 1} ;c_{k + 1} ,\varvec{p}_{k + 1} } \right),$$
(119)
$$X_{k}^{2} + Y_{k}^{2} + Z_{k}^{2} = 1,$$
(120)
$$X_{k + 1}^{2} + Y_{k + 1}^{2} + Z_{k + 1}^{2} = 1.$$
(121)

If we eliminate z k , z k+1, Z k , and Z k+1, using the above relational expressions, we can eventually express x k+1, y k+1, X k+1, and Y k+1, as follows:

$$x_{k + 1} = x_{k + 1} \left( {x_{k} ,y_{k} ,X_{k} ,Y_{k} ;c_{k} ,\varvec{p}_{k} ;t_{k} ;c_{k + 1} ,\varvec{p}_{k + 1} } \right),$$
(122)
$$y_{k + 1} = y_{k + 1} \left( {x_{k} ,y_{k} ,X_{k} ,Y_{k} ;c_{k} ,\varvec{p}_{k} ;t_{k} ;c_{k + 1} ,\varvec{p}_{k + 1} } \right),$$
(123)
$$X_{k + 1} = X_{k + 1} \left( {x_{k + 1} ,y_{k + 1} ,X_{k} ,Y_{k} ;n_{k} ;c_{k + 1} ,\varvec{p}_{k + 1} ;n_{k + 1} } \right),$$
(124)
$$Y_{k + 1} = Y_{k + 1} \left( {x_{k + 1} ,y_{k + 1} ,X_{k} ,Y_{k} ;n_{k} ;c_{k + 1} ,\varvec{p}_{k + 1} ;n_{k + 1} } \right).$$
(125)

Equations (122) and (123) and Eqs. (124) and (125) are symbolic expressions of transfer equations and refraction equations, respectively.

Differentiation with respect to the parameters c, p, t, and n of an optical system may be the objects of interest in differential ray tracing, but here those parameters are assumed to be fixed. Then differentiation of Eqs. (122) and (123) with respect to x k, y k , X k , and Y k , and of Eqs. (124) and (125) with respect to x k+1, y k+1, X k , and Y k will be calculated.

When Eqs. (105), (106), (107), (118), (119), and (120) are differentiated,

$$\delta x_{k + 1} = \delta x_{k} + L_{k} \delta X_{k} + X_{k} \delta L_{k} ,$$
(126)
$$\delta y_{k + 1} = \delta y_{k} + L_{k} \delta Y_{k} + Y_{k} \delta L_{k} ,$$
(127)
$$\delta z_{k + 1} = \delta z_{k} + L_{k} \delta Z_{k} + Z_{k} \delta L_{k} ,$$
(128)
$$\delta z_{k} = \left( {\partial f_{k} /\partial x_{k} } \right)\delta x_{k} + \left( {\partial f_{k} /\partial y_{k} } \right)\delta y_{k} ,$$
(129)
$$\delta z_{k + 1} = \left( {\partial f_{k + 1} /\partial x_{k + 1} } \right)\delta x_{k + 1} + \left( {\partial f_{k + 1} /\partial y_{k + 1} } \right)\delta y_{k + 1} ,$$
(130)
$$X_{k} \delta X_{k} + Y_{k} \delta Y_{k} + Z_{k} \delta Z_{k} = 0.$$
(131)

After eliminating δz k , δz k+1, δZ k , δL k from Eqs. (126)–(131), making variable substitutions and modifying the presentation of the resulted equations using Eqs. (109)–(111), the following equations will be derived:

$$\begin{aligned} \delta x_{k + 1} &= \left[ { 1 + X_{k} \xi_{k + 1}^{ - 1} \varepsilon_{zk}^{ - 1} \left( {\varepsilon_{zk + 1} \varepsilon_{xk} - \varepsilon_{xk + 1} \varepsilon_{zk} } \right) } \right] \delta x_{k} \hfill \\ &\quad+ \left[ { X_{k} \xi_{k + 1}^{ - 1} \varepsilon_{zk}^{ - 1} \left( {\varepsilon_{zk + 1} \varepsilon_{yk} - \varepsilon_{yk + 1} \varepsilon_{zk} } \right) } \right] \delta y_{k} \hfill \\ &\quad+ \left[ { L_{k} \left\{ {1 + X_{k} \xi_{k + 1}^{ - 1} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right)} \right\} } \right] \delta X_{k} \hfill \\ &\quad+ \left[ { L_{k} X_{k} \xi_{k + 1}^{ - 1} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right) } \right] \delta Y_{k} , \hfill \\ \end{aligned}$$
(132)
$$\begin{aligned} \delta y_{k + 1} &= \left[ { Y_{k} \xi_{k + 1}^{ - 1} \varepsilon_{zk}^{ - 1} \left( {\varepsilon_{zk + 1} \varepsilon_{xk} - \varepsilon_{xk + 1} \varepsilon_{zk} } \right) } \right] \delta x_{k} \hfill \\ &\quad+ \left[ { 1 + Y_{k} \xi_{k + 1}^{ - 1} \varepsilon_{zk}^{ - 1} \left( {\varepsilon_{zk + 1} \varepsilon_{yk} - \varepsilon_{yk + 1} \varepsilon_{zk} } \right) } \right] \delta y_{k} \hfill \\ &\quad+ \left[ { L_{k} Y_{k} \xi_{k + 1}^{ - 1} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right) } \right] \delta X_{k} \hfill \\ &\quad+ \left[ { L_{k} \left\{ {1 + Y_{k} \xi_{k + 1}^{ - 1} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right)} \right\} } \right] \delta Y_{k} . \hfill \\ \end{aligned}$$
(133)

As (ε xk+1, ε yk+1, ε zk+1) is a unit normal vector,

$$e_{xk + 1}^{2} + e_{yk + 1}^{2} + e_{zk + 1}^{2} = 1.$$
(134)

When Eqs. (108), (109), (110), (111), (113), (114), (115), (116), and (134) are differentiated,

$$\begin{aligned} \delta \varepsilon_{zk + 1} &= \varepsilon_{zk + 1}^{2} \left\{ {\varepsilon_{xk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1}^{2} } \right) + \varepsilon_{yk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right)} \right\}\delta x_{k + 1} \hfill \\ &\quad+ \varepsilon_{zk + 1}^{2} \left\{ {\varepsilon_{xk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right) + \varepsilon_{yk + 1} \left( {\partial^{2} f_{k + 1} /\partial y_{k + 1}^{2} } \right)} \right\}\delta y_{k + 1} , \hfill \\ \end{aligned}$$
(135)
$$\begin{aligned} \delta \varepsilon_{xk + 1} &= - \left( {\partial f_{k + 1} /\partial x_{k + 1} } \right)\delta \varepsilon_{zk + 1} - \varepsilon_{zk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1}^{2} } \right)\delta x_{k + 1} \hfill \\ &\quad - \varepsilon_{zk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right)\delta y_{k + 1} , \hfill \\ \end{aligned}$$
(136)
$$\begin{aligned} \delta \varepsilon_{yk + 1} &= - \left( {\partial f_{k + 1} /\partial y_{k + 1} } \right)\delta \varepsilon_{zk + 1} - \varepsilon_{zk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right)\delta x_{k + 1} \hfill \\ &\quad - \varepsilon_{zk + 1} \left( {\partial^{2} f_{k + 1} /\partial y_{k + 1}^{2} } \right)\delta y_{k + 1} , \hfill \\ \end{aligned}$$
(137)
$$\delta \xi_{k + 1} = X_{k} \delta \varepsilon_{xk + 1} + Y_{k} \delta \varepsilon_{yk + 1} + Z_{k} \delta \varepsilon_{zk + 1} + \varepsilon_{xk + 1} \delta X_{k} + \varepsilon_{yk + 1} \delta Y_{k} + \varepsilon_{zk + 1} \delta Z_{k} ,$$
(138)
$$\delta \xi_{k + 1}^{{\prime }} = \xi_{k + 1}^{{{\prime } - 1}} \mu_{k + 1}^{2} \xi_{k + 1} \delta \xi_{k + 1} ,$$
(139)
$$\delta g_{k + 1} = \delta \xi_{k + 1}^{{\prime }} - \mu_{k + 1} \delta \xi_{k + 1} ,$$
(140)
$$\delta X_{k + 1} = \mu_{k + 1} \delta X_{k} + g_{k + 1} \delta \varepsilon_{xk + 1} + \varepsilon_{xk + 1} \delta g_{k + 1} ,$$
(141)
$$\delta Y_{k + 1} = \mu_{k + 1} \delta Y_{k} + g_{k + 1} \delta \varepsilon_{yk + 1} + \varepsilon_{yk + 1} \delta g_{k + 1} ,$$
(142)
$$\varepsilon_{xk + 1} \delta \varepsilon_{xk + 1} + \varepsilon_{yk + 1} \delta \varepsilon_{yk + 1} + \varepsilon_{zk + 1} \delta \varepsilon_{zk + 1} = 0.$$
(143)

After eliminating δε xk+1, δε yk+1, δε zk+1, δg k+1, δξ k+1, \(\delta \xi_{k + 1}^{{\prime }}\), δZ k from Eqs. (131) and (135)–(143), then variable substitution and modification of the presentation of the resulting equations using the following equations,

$$\rho_{xxk + 1} = \left( {\varepsilon_{yk + 1}^{2} + \varepsilon_{zk + 1}^{2} } \right)\left( {\partial^{2} f_{k + 1} /\partial x_{k + 1}^{2} } \right) - \varepsilon_{xk + 1} \varepsilon_{yk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right),$$
(144)
$$\rho_{xyk + 1} = \left( {\varepsilon_{xk + 1}^{2} + \varepsilon_{zk + 1}^{2} } \right)\left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right) - \varepsilon_{xk + 1} \varepsilon_{yk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1}^{2} } \right),$$
(145)
$$\rho_{yxk + 1} = \left( {\varepsilon_{yk + 1}^{2} + \varepsilon_{zk + 1}^{2} } \right)\left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right) - \varepsilon_{xk + 1} \varepsilon_{yk + 1} \left( {\partial^{2} f_{k + 1} /\partial y_{k + 1}^{2} } \right),$$
(146)
$$\rho_{yyk + 1} = \left( {\varepsilon_{xk + 1}^{2} + \varepsilon_{zk + 1}^{2} } \right)\left( {\partial^{2} f_{k + 1} /\partial y_{k + 1}^{2} } \right) - \varepsilon_{xk + 1} \varepsilon_{yk + 1} \left( {\partial^{2} f_{k + 1} /\partial x_{k + 1} \partial y_{k + 1} } \right),$$
(147)

these equations will be derived:

$$\begin{aligned} \delta X_{k + 1} &= [ g_{k + 1} \left\{ {\mu_{k + 1} \varepsilon_{xk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right) - \varepsilon_{zk + 1} } \right\}\rho_{xxk + 1} \hfill \\ &\quad+ g_{k + 1} \mu_{k + 1} \varepsilon_{xk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right)\rho_{xyk + 1} ] \delta x_{k + 1} \hfill \\ &\quad+ [ g_{k + 1} \left\{ {\mu_{k + 1} \varepsilon_{xk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right) - \varepsilon_{zk + 1} } \right\}\rho_{yxk + 1} \hfill \\ &\quad + g_{k + 1} \mu_{k + 1} \varepsilon_{xk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right)\rho_{yyk + 1} ] \delta y_{k + 1} \hfill \\ &\quad + \left[ { \mu_{k + 1} \left\{ {1 + g_{k + 1} \varepsilon_{xk + 1} \xi_{k + 1}^{{{\prime - 1}}} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right)} \right\} } \right] \delta X_{k} \hfill \\ &\quad + \left[ { \mu_{k + 1} g_{k + 1} \varepsilon_{xk + 1} \xi_{k + 1}^{{{\prime - 1}}} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right) } \right] \delta Y_{k} , \hfill \\ \end{aligned}$$
(148)
$$\begin{aligned} \delta Y_{k + 1} &= [ g_{k + 1} \left\{ {\mu_{k + 1} \varepsilon_{yk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right) - \varepsilon_{zk + 1} } \right\}\rho_{xyk + 1} \hfill \\ &\quad + g_{k + 1} \mu_{k + 1} \varepsilon_{yk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right)\rho_{xxk + 1} ] \delta x_{k + 1} \hfill \\ &\quad + [ g_{k + 1} \left\{ {\mu_{k + 1} \varepsilon_{yk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right) - \varepsilon_{zk + 1} } \right\}\rho_{yyk + 1} \hfill \\ &\quad + g_{k + 1} \mu_{k + 1} \varepsilon_{yk + 1} \xi_{k + 1}^{{{\prime - 1}}} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right)\rho_{yxk + 1} ] \delta y_{k + 1} \hfill \\ &\quad + \left[ { \mu_{k + 1} g_{k + 1} \varepsilon_{yk + 1} \xi_{k + 1}^{{{\prime - 1}}} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} X_{k} - \varepsilon_{xk + 1} Z_{k} } \right) } \right] \delta X_{k} \hfill \\ &\quad + \left[ { \mu_{k + 1} \left\{ {1 + g_{k + 1} \varepsilon_{yk + 1} \xi_{k + 1}^{{{\prime - 1}}} Z_{k}^{ - 1} \left( {\varepsilon_{zk + 1} Y_{k} - \varepsilon_{yk + 1} Z_{k} } \right)} \right\} } \right] \delta Y_{k} . \hfill \\ \end{aligned}$$
(149)

Equations (132) and (133) are the differentiations of the transfer equations and Eqs. (148) and (149) are the differentiations of the refraction equations. From these, the partial differential coefficients expressed by Eqs. (44)–(59) in Sect. 3.1 are derived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirayanagi, M. Methods for calculating the vergence of an astigmatic ray bundle in an optical system that contains a freeform surface. Opt Rev 23, 730–745 (2016). https://doi.org/10.1007/s10043-016-0245-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0245-3

Keywords

Navigation