Skip to main content

Advertisement

Log in

Lidar observations of wind over Xin Jiang, China: general characteristics and variation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The mobile Rayleigh Doppler lidar based on a Fabry–Perot etalon is developed for wind measurement. The structure and technical parameters of this lidar system are described in brief. The 1740 wind profiles from 8 to 40 km altitudes by the lidar in Xinjiang, China, were obtained in 2010 and 2011, and were used to analyze the characteristics and variations of wind. The results shown that the wind velocity is within a three-layer structure: westerly jet layer (9–14 km), quasi-zero velocity layer (18–22 km) and gale layer (22–40 km). In August and September, the wind direction is within a three-layer structure: zonal westerly wind layer (5–18 km) where wind direction is west, zonal wind reverse layer (18–22 km) where wind direction is unstable and easterly wind layer (22–40 km) where wind direction is east. In October, wind direction is west (8–40 km). Wind observations by lidar are a realistic offset to the rawins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Salonen, K., Haase, G., Eresmaa, R., Hohtia, H., Järvinena, H.: Towards the operational use of Doppler radar radial winds in HIRLAM. Atmos. Res. 10, 190 (2011)

    Article  Google Scholar 

  2. Baker, W.E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G.D., Gentry, B.M., Michael Hardesty, R., Källén, E., Kavaya, M.J., Langland, R., Ma, Z.Z., Masutani, M., McCarty, W., Bradley Pierce, R., Pu, Z., Riishojgaard, L. P., Ryan, J., Tucker, S., Weissmann, M., Yoe, J.G.: Lidar measured wind profiles: the missing link in the global observing system. Am. Meteorol. Soc. 10, 543 (2014)

  3. Gao, F., Berganta, K., Filipčiča, A., Forte, B., Hua, D.-X., Song, X.-Q., Stanič, S., Veberič, D., Zavrtanik, M.: Observations of the atmospheric boundary layer across the land–sea transition zone using a scanning Mie lidar. J. Quant. Spectrosc. Radiat. Transf. 112, 182 (2011)

    Article  ADS  Google Scholar 

  4. Rufenacht, R., Kampfer, N., Murk, A.: First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech. Discuss. 5, 5107 (2012)

    Article  Google Scholar 

  5. Wang, G., Sun, D., Du, H., Shu, Z., Tang, L., Hu, D., Xu, W., Dong, J., Dou, X.: Analysis of doppler wind lidar detecting data based on Fabry-Perot Etalon. Chin. J. Lasers 38, 0314002–1 (2011). (in Chinese)

    Article  Google Scholar 

  6. Liu, Y., Liu, J., Chen, W.: Eye-safe single-frequency pulsed all-fiber laser for Doppler wind lidar. Chin. Opt. Lett. 9, 090604 (2011)

    Article  ADS  Google Scholar 

  7. Claude, S., Anne, G., Albert, H.: Rayleigh-Mie Doppler wind lidar for atmospheric measurements II, Mie scattering effect, theory, and calibration. Appl. Opt. 38, 2422 (1999)

    Article  Google Scholar 

  8. Baumgarten, G.: Twin Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80km. Atmos. Meas. Tech. Discuss. 3, 2779 (2010)

    Article  Google Scholar 

  9. Sachin, M., Deshpande, P., Raj, E.: UHF wind profiler observations during a tropical pre-monsoon thunderstorm—A case study. Atmos. Res. 93, 179 (2009)

    Article  Google Scholar 

  10. Souprayen, C., Garnier, A., Hertzog, A., Hauchecorne, A., Porteneuve, J.: Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results. Appl. Opt. 38, 2410 (1999)

    Article  ADS  Google Scholar 

  11. Gentry, B.M., Chen, H., Li, X.: Wind measurements with 355-nm molecular Doppler lidar. Opt. Lett. 25, 1231 (2000)

    Article  ADS  Google Scholar 

  12. Gentry, B., Chen, H.: Tropospheric wind measurements obtained with the Goddard Lidar Observatory for Winds (GLOW) validation and performance. Proc. of the 21st International Laser Radar Conference, Quebec, p. 1 (2002)

  13. Rees, D., Vyssogorets, M., Meredith, N.P., Griffin, E., Chaxel, Y.: The Doppler wind and system of the ALOMAR lidar facility: overview and initial results. Atmos. Terr. Phys. 58, 1827 (1996)

    Article  ADS  Google Scholar 

  14. Von, Z.U., Von, C.G., Fiedler, J., Fricke, K.H., Nelke, G., Baumgarten G., David R., Hauchecorne, A., Adolfsen, K.: The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance. Ann. Geophys. 18, 815 (2000)

    Article  ADS  Google Scholar 

  15. Hildebrand, J, Baumgarten, G, Fiedler, J, Hoppe, U-P., Kaifler, B., Lübken, F.-J., Williams, B.P.: Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere. Atmos. Meas. Tech. Discuss. 5, 4123 (2012)

    Article  Google Scholar 

  16. Tang, L., Wang, Y., Shu, Z., Dong, J., Wang, G., Xu, W., Hu, D., Dou, T.C.X., Sun, D., Cha, H.: Analysis of detectors and transmission curve correction of mobile rayleigh Doppler wind lidar. Chin. Phys. Lett. 27, 114207 (2010)

    Article  ADS  Google Scholar 

  17. Dou, X., Han, Y., Sun, D., Xia, H., Shu, Z., Zhao, R., Shangguan, M., Guo, J.: Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere. Opt. Express 22, A1203 (2014)

    Article  ADS  Google Scholar 

  18. Han, Y., Sun, D., Dou, X., Xia, H., Shu, Z., Zhao, R., Shangguan, M., Gao, Y.: Frequency drift control for wind measurements by UV Rayleigh Doppler lidar. J. Quant. Spectrosc. Radiat. Transf. 10, 1016 (2014)

    Google Scholar 

  19. Ren, G., Zhang, A., Wang, Y., Guo, J.: Climatology of upper wind speeds over China. Geogr. Res. 28, 1583 (2009)

    Google Scholar 

  20. Zhang, F., Dou, X., Sun, D., Shu, Z., Xia, H., Gao, Y., Hu, D., Shangguan, M.: Analysis on error of laser frequency locking for fiber optical receiver in direct detection wind lidar based on Fabry-Perot interferometer and improvements. Opt. Eng. 53, 124102–1 (2014)

    Article  ADS  Google Scholar 

  21. Flesia, C., Korb, C.L.: Theory of the double-edge molecular technique for Doppler lidar wind measurement. Appl. Opt. 38, 432 (1999)

    Article  ADS  Google Scholar 

  22. Sun, D., Li, Y.: Doppler lidar for both high and low altitude wind detection. Infrared Laser Eng. 37, 237 (2008). (in Chinese)

    Google Scholar 

  23. Laurence Korb, C., Gentry, B.M., Li, S.X., Flesia, C.: Theory of the double-edge technique for Doppler lidar wind measurement. Appl. Opt. 37, 3097 (1998)

    Article  ADS  Google Scholar 

  24. Gentry, B.M., Laurence Korb, C.: Edge technique for high-accuracy Doppler velocimetry. Appl. Opt. 33, 5770 (1994)

    Article  ADS  Google Scholar 

  25. Huffaker, R.M.: Laser Doppler detection systems for gas velocity measurement. Appl. Opt. 9, 1026 (1970)

    Article  ADS  Google Scholar 

  26. Ma, r., Liao, H.: Chin.: The characteristics of winds at height of 20–80km in the Chinese area. J. Sp. Sci. 19, 334 (1999)

  27. ZHang, A., Ren, G., Guo, J., Wang, Y.: Change trend analyses on upper-air wind speed over China in past 30 years. Plateau Meteorol. 28, 680 (2009)

  28. Xu, X., Gao, P., Zhang, X.: Structure and variation of the tropopause over China with COSMIC radio occultation bending angles. Chin. J. Geophys. 56, 2531 (2013)

    Google Scholar 

Download references

Acknowledgments

Jun Guan and Jie Liu are gratefully acknowledged for providing the radiosonde wind measurements in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Sun, Ds., Weng, Nq. et al. Lidar observations of wind over Xin Jiang, China: general characteristics and variation. Opt Rev 23, 637–645 (2016). https://doi.org/10.1007/s10043-016-0226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0226-6

Keywords

Navigation