Skip to main content

Advertisement

Log in

Oxyfluoroborate host glass for upconversion application: phonon energy calculation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Reducing the glass phonon energy is an essential procedure to achieve high efficient radiative upconversion process. The degree of covalence of chemical bonds is responsible for the high oscillator strength of intracenter transitions in rare-earth ions. So, conversion covalent to ionic glass character is proposed as a structure-sensitive criterion that controls the phonon energy of the glasses. A series of oxyfluoro aluminum-borate host glasses used for upconversion application is prepared by the conventional melt-quenching technique. Through lithium oxide substitution by lithium fluoride, the ionic-covalent property of Li+ ion successes to regulate the band gap energies of the studied glasses. Furthermore, a new method to determine the glass phonon energy is offered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdel-Baki, M., El-Diasty, F.: Glasses for photonic technologies. Inter. J. Opt. Appl. 3, 125–137 (2013)

    Google Scholar 

  2. Rai, A., Rai, S.B., Mahato, K.K.: Frequency upconversion involving quartets of ions in a Pr3+/Eu3+ oxyfluoroborate glass. Chem. Phys. Lett. 414, 222–225 (2005)

    Article  ADS  Google Scholar 

  3. Mahato, K.K., Rai, S.B.: Laser spectroscopic studies of Tb3+-doped oxyfluoroborate glass. Spectrochim. Acta A 56, 2333–2340 (2000)

    Article  ADS  Google Scholar 

  4. Kumar, A., Rai, D.K., Rai, S.B.: Luminescence of Gd3+ ions doped in oxyfluoroborate glass. Solid State Commun. 117, 387–392 (2001)

    Article  ADS  Google Scholar 

  5. Pisarska, J., Ryba-Romanowski, W., Dominiak-Dzik, G., Goryczka, T., Pisarski, W.A.: Nd-doped oxyfluoroborate glasses and glass-ceramics for NIR laser applications. J. Alloys Comp. 451, 223–225 (2008)

    Article  Google Scholar 

  6. Bahadur, A., Dwivedi, Y., Rai, S.B.: Optical properties of cerium doped oxyfluoroborate glass. Spectrochim. Acta A: Mol. Biomol. Spect. 110, 400–403 (2013)

    Article  ADS  Google Scholar 

  7. Mahato, K.K., Rai, A., Rai, S.B.: Optical properties of Dy3+ doped in oxyfluoroborate glass. Spectrochim. Acta A 61, 431–436 (2005)

    Article  ADS  Google Scholar 

  8. Tver’yanovich, Y.S., Pastor, A.A.: Resonant optical nonlinearity in vitreous semiconductors. Glass Phys. Chem. 29, 328–329 (2003)

    Article  Google Scholar 

  9. Mamedov, A.A., Noginov, M.A., Smirnov, V.A., Sokolov, V.V., Shcherbakov, I.A.: Application of sulfide glasses as active media of diode-pumped neodymium lasers. Fiz. Khim. Stekla 17, 446–450 (1991)

    Google Scholar 

  10. El-Diasty, F., Abdel-Baki, M., Abdel-Wahab, F. A.: Oxyfluoro aluminum-borate host glass: Interband gap study and estimation of radiative lifetime for luminescent dopant ions. Opt. Quant. Electron 48, (2016)

  11. Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystalline Materials. Oxford Univ Press, Oxford (1979)

    Google Scholar 

  12. Tauc, J.: Amorphous and liquid semiconductors, p. 159. Plenum Press, London (1974)

    Book  Google Scholar 

  13. Pye, L.D., Frechette, V.D., Kreidl, N.J.: Borate glasses: structure, properties and applications. Plenum, New York (1978)

    Book  Google Scholar 

  14. Duffy, J.A.: Ultraviolet transparency of glass: a chemical approach in terms of band theory, polarisability and electronegativity. Phys. Chem. Glasses 42, 151–157 (2001)

    Google Scholar 

  15. Abdel-Baki, M., Abdel Wahab, F., El-Diasty, F.: One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J. Appl. Phys. 111, 073506 (2012)

    Article  ADS  Google Scholar 

  16. Holleman, A. F., Wiberg, E.:Inorganic Chemistry. Academic Press P, 135, (2001)

  17. Rada, S., Pascuta, P., Culea, M., Pop, L., Culea, E.: Structural properties of the boro-bismuthate glasses containing gadolinium ions. Vib. Spectrosc. 48, 255–258 (2008)

    Article  Google Scholar 

  18. Saddeek, Y.B., Shaaban, E.R., Moustafa, H.M.: Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Phys. B 403, 2399–2407 (2008)

    Article  ADS  Google Scholar 

  19. Kamitsos, E.I., Karakassides, M.A., Chryssikos, G.D.: Vibrational spectra of magnesium sodium borate glasses: 2. Raman and mid-infrared investigation of network structure. J. Phys. Chem. 91, 1073–1079 (1987)

    Article  Google Scholar 

  20. Pascuta, P., Borodi, G., Culea, E.: Structural investigation of bismuth borate glass ceramics containing gadolinium ions by X-ray diffraction and FTIR spectroscopy. J. Mater. Sci.: Mater. Electron. 20, 360–365 (2009)

    Google Scholar 

  21. Ali, K.A., El-Din Mostafa, A.G.: Study of the structure and some physical properties of sodium-boro-Pphosphate glasses containing antimony and iron oxides. Turk. J. Phys. 27, 225–233 (2003)

    Google Scholar 

  22. Varsamis, C.P.E., Kamitsos, E.I., Minami, T.: Structural investigation of superionic AgI-containing orthoborate glasses. J. Non-Cryst. Solids 345 and 346, 93–98 (2004)

    Article  Google Scholar 

  23. Chakrabarti, R., Annapurna, K., Buddhudu, : Emission analysis of Eu3+ : CaO–La2O3–B2O3 glass. J. Non-Cryst. Solids 353, 1422–1426 (2007)

    Article  ADS  Google Scholar 

  24. Denning, J.H., Boss, S.D.: The vibrational spectra and structures of some rare-earth borates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 28, 1775–1785 (1972)

    Article  ADS  Google Scholar 

  25. Ren, M., Lin, J.H., Dong, Y., Yang, L.Q., Su, M.Z., You, L.P.: Structure and phase transition of GdBO3. Chem. Mater. 11, 1576–1580 (1999)

    Article  Google Scholar 

  26. Kamitsos, E.I., Karakassides, M.A., Patsis, A.P.: Spectroscopic study of carbonate retention in high-basicity borate glasses. J. Non-Cryst. Solids 111, 252–262 (1989)

    Article  ADS  Google Scholar 

  27. Kamitsos, E.I., Karakassides, M.A.: Structural studies of binary and pseudobinary sodium borate glasses of high sodium content. Phys. Chem. Glasses 30, 19–26 (1989)

    Google Scholar 

  28. Kamitsos, E.I., Patsis, A.P., Karakassides, M.A., Chryssikos, G.D.: Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126, 52–67 (1990)

    Article  ADS  Google Scholar 

  29. Varsamis, C.P., Kamitsos, E.I., Chryssikos, G.D.: Structure of fast-ion-conducting AgI-doped borate glasses in bulk and thin film forms. Phys. Rev. B. 60, 3885–3898 (1999)

    Article  ADS  Google Scholar 

  30. Winterstein-Beckmann, A., Möncke, D., Palles, D., Kamitsos, E.I., Wondraczek, L.: Structure–property correlations in highly modified Sr, Mn-borate glasses. J. Non-Cryst. Solids 376, 165–174 (2013)

    Article  ADS  Google Scholar 

  31. Duffy, J.A.: The importance of π-bonding in glass chemistry: borate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 49, 317–325 (2008)

    Google Scholar 

  32. Varshneya, A.K.: Fundamentals of inorganic glasses. Academic Press Inc., New York (1994)

    Google Scholar 

  33. Upender, G., Ramesh, S., Prasada, M., Sathe, V.G., Mouli, V.C.: Optical band gap, glass transition temperature and structural studies of (100–2x)TeO2–xAg2O–xWO3 glass system. J. Alloys Comp. 504, 468–474 (2010)

    Article  Google Scholar 

  34. Abdel-Baki, M., Abdel Wahab, F.A., Radi, A., El-Diasty, F.: Factors affecting optical dispersion in borate glass systems. J. Phys. Chem. Solids 68, 1457–1470 (2007)

    Article  ADS  Google Scholar 

  35. Essick, J.M., Mather, R.T.: Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am. J. Phys. 61, 646–649 (1993)

    Article  ADS  Google Scholar 

  36. Som, T., Karmakar, B.: Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses. J. Alloys Comp. 476, 383–389 (2009)

    Article  Google Scholar 

  37. Som, T., Karmakar, B.: Infrared-to-red upconversion luminescence in samarium-doped antimony glasses. J. Lumine. 128, 1989–1996 (2008)

    Article  Google Scholar 

  38. Miller, P.J., Cody, C.A.: Infrared and Raman investigation of vitreous antimony trioxide. Spectrochim. Acta A 38, 555–559 (1982)

    Article  ADS  Google Scholar 

  39. Karmakar, B., Dwivedi, R.N.: FT-IRRS, UV–Vis–NIR absorption and green upconversion in Er3+ doped lead silicate glass. J. Non-Cryst. Solids 342, 132–139 (2004)

    Article  ADS  Google Scholar 

  40. Sun, H., Xu, S., Dai, S., Wen, L., Zhang, J., Hu, L., Jiang, Z.: Efficient frequency upconversion emission in Er3+-doped novel strontium lead bismuth glass. J. Non-Cryst. Solids 351, 288–292 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouad El-Diasty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Baki, M., El-Diasty, F. Oxyfluoroborate host glass for upconversion application: phonon energy calculation. Opt Rev 23, 284–289 (2016). https://doi.org/10.1007/s10043-016-0199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0199-5

Keywords

Navigation