Skip to main content
Log in

Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin

  • Special Section: Regular Paper
  • The 5th Asian and Pacific-Rim Symposium on Biophotonics, (APBP’15), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We investigate a method to evaluate light-scattering properties and chromophore concentrations in human skin tissue through diffuse reflectance spectroscopy using the reflectance signals acquired at isosbestic wavelengths of hemoglobin (420, 450, 500, and 585 nm). In the proposed method, Monte Carlo simulation-based empirical formulas are used to specify the scattering parameters of skin tissue, such as the scattering amplitude a and the scattering power b, as well as the concentration of melanin C m and the total blood concentration C tb. The use of isosbestic wavelengths of hemoglobin enables the values of C m, C tb, a, and b to be estimated independently of the oxygenation of hemoglobin. The spectrum of the reduced scattering coefficient is reconstructed from the scattering parameters. Experiments using in vivo human skin tissues were performed to confirm the feasibility of the proposed method for evaluating the changes in scattering properties and chromophore concentrations in skin tissue. The experimental results revealed that light scattering is significantly reduced by the application of a glycerol solution, which indicates an optical clearing effect due to osmotic dehydration and the matching of the refractive indices of scatterers in the epidermis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonhoeffer, T., Grinvald, A.: Brain Mapping: The Methods. Academic Press, San Diego (1996)

    Google Scholar 

  2. Nishidate, I., Yoshida, K., Sato, M.: Changes in optical properties of rat cerebral cortical slices during oxygen glucose deprivation. Appl. Opt. 49(34), 6617–6623 (2010)

    Article  ADS  Google Scholar 

  3. Anderson, R.R., Parrish, J.A.: The optics of human skin. J. Invest. Dermatol. 77(1), 13–19 (1981)

    Article  Google Scholar 

  4. Prahl, S.A., van Gemert, M.J.C., Welch, A.J.: Determining the optical properties of turbid media by using the adding-doubling method. Appl. Opt. 32(4), 559–568 (1993)

    Article  ADS  Google Scholar 

  5. Ishimaru, A.: Wave Propagation and Scattering in Random Media. Academic Press, New York (1978)

    MATH  Google Scholar 

  6. Wang, L.-H., Jacques, S.L., Zheng, L.-Q.: MCML-Monte Carlo modeling of photon transport in multi-layered tissues. Comput. Methods Programs Biomed. 47(2), 131–146 (1995)

    Article  Google Scholar 

  7. Fishkin, J.B., Coquoz, O., Anderson, E.R., Brenner, M., Tromberg, B.J.: Frequency-domain photon migration measurements of normal and malignant tissue optical properties in a human subject. Appl. Opt. 36(1), 10–20 (1997)

    Article  ADS  Google Scholar 

  8. Patterson, M.S., Chance, B., Wilson, B.C.: Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties. Appl. Opt. 28(12), 2331–2336 (1989)

    Article  ADS  Google Scholar 

  9. Farrell, T.J., Patterson, M.S., Wilson, B.: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19(4), 879–888 (1992)

    Article  Google Scholar 

  10. Jacques, S.L., Gutsche, A., Schwartz, J.A., Wang, L.-H., Tittel, F.K.: Video reflectometry to specify optical properties of tissue in vivo. In: Medical Optical Tomography: Functional Imaging and Monitoring, vol. IS11 of SPIE Institute Series, pp. 211–226, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1993)

  11. Wang, L., Jacques, S.L.: Use of a laser beam with an oblique angle on incidence to measure the reduced scattering coefficient of a turbid medium. Appl. Opt. 34(13), 2362–2366 (1995)

    Article  ADS  Google Scholar 

  12. Kienle, A., Lilge, L., Patterson, M.S., Hibst, R., Steiner, R., Wilson, B.C.: Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue. Appl. Opt. 35(13), 2304–2314 (1996)

    Article  ADS  Google Scholar 

  13. Lin, S.-P., Wang, L.-H., Jacques, S.L., Tittel, F.K.: Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry. Appl. Opt. 36(1), 136–143 (1997)

    Article  ADS  Google Scholar 

  14. Utzinger, U., Richards-Kortum, R.R.: Fiber optic probes for biomedical optical spectroscopy. J. Biomed. Opt. 8(1), 121–147 (2003)

    Article  ADS  Google Scholar 

  15. Bargo, P.R., Prahl, S.A., Goodell, T.T., Sleven, R.A., Koval, G., Blair, G., Jacques, S.L.: In vivo determination of optical properties of normal and tumor tissue with white light reflectance and empirical light transport model during endoscopy. J. Biomed. Opt. 10(3), 034018 (2005)

    Article  ADS  Google Scholar 

  16. Nishidate, I., Mizushima, C., Yoshida, K., Kawauchi, S., Sato, S., Sato, M.: In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression. J. Biomed. Opt. 20(2), 027003 (2015)

    Article  ADS  Google Scholar 

  17. Mourant, J.R., Freyer, J.P., Hielscher, A.H., Eick, A.A., Shen, D., Johnson, T.M.: Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37(16), 3586–3593 (1998)

    Article  ADS  Google Scholar 

  18. Abookasis, D., Lay, C.C., Mathews, M.S., Linskey, M.E., Frostig, R.D., Tromberg, B.J.: Imaging cortical absorption, scattering, and hemodynamic response during ischemic stroke using spatially modulated near-infrared illumination. J. Biomed. Opt. 14(2), 024033 (2009)

    Article  ADS  Google Scholar 

  19. Jacques, S.L.: Origins of tissue optical properties in the UVA, Visible, and NIR regions. In: Alfano, R.R., Fujimoto, J.G. (eds.) OSA TOPS on Advances in Optical Imaging and Photon Migration, vol. 2, pp. 364–369. Optical Society of America (1996)

  20. Vargas, G., Chan, E.K., Barton, J.K., Rylander III, H.G., Welch, A.J.: Use of an agent to reduce scattering in skin. Lasers Surg. Med. 24, 133–144 (1999)

    Article  Google Scholar 

  21. Yeh, A.T., Choi, B., Nelson, J.S., Tromberg, B.J.: Reversible dissociation of collagen in tissues. J. Invest. Dermatol. 121(6), 1332–1335 (2003)

    Article  Google Scholar 

  22. Tuchin, V.V.: Optical Clearing of Tissues and Blood. SPIE Press, Bellingham (2006)

    Google Scholar 

  23. Genina, E.A., Bashkatov, A.N., Korobko, A.A., Zubkova, E.A., Tuchin, V.V., Yaroslavsky, I.V., Altshuler, G.B.: Optical clearing of human skin: comparative study of permeability and dehydration of intact and photothermally perforated skin. J. Biomed. Opt. 13(2), 021102 (2008)

    Article  ADS  Google Scholar 

  24. Galanzha, E.I., Tuchin, V.V., Solovieva, A.V., Stepanova, T.V., Luo, Q., Cheng, H.: Skin backreflectance and microvascular system functioning at the action of osmotic agents. J. Phys. D Appl. Phys. 36(14), 1739–1746 (2003)

    Article  ADS  Google Scholar 

  25. Cicchi, R., Pavone, F.S., Massi, D., Sampson, D.D.: Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents. Opt. Express 13(7), 2337–2344 (2005)

    Article  ADS  Google Scholar 

  26. Plotnikov, S., Juneja, V., Isaacson, A.B., Mohler, W.A., Campagnola, P.J.: Optical clearing for improved contrast in second harmonic generation imaging of skeletal muscle. Biophys. J. 90(1), 328–339 (2006)

    Article  Google Scholar 

  27. Mao, Z., Zhu, D., Hu, Y., Wen, X., Han, Z.: Influence of alcohols on the optical clearing effect of skin in vitro. J. Biomed. Opt. 13(2), 021104 (2008)

    Article  ADS  Google Scholar 

  28. Yeh, A.T., Hirshburg, J.: Molecular interactions of exogenous chemical agents with collagen—implications for tissue optical clearing. J. Biomed. Opt. 11(1), 014003 (2006)

    Article  ADS  Google Scholar 

  29. Bashkatov, A.N., Korolevich, A.N., Tuchin, V.V., Sinichkin, Y.P., Genina, E.A., Stolnitz, M.M., Dubina, N.S., Vecherinski, S.I., Belsley, M.S.: In vivo investigation of human skin optical clearing and blood microcirculation under the action of glucose solution. Asian J. Phys. 15(1), 1–14 (2006)

    Google Scholar 

  30. Rylander, C.G., Stumpp, O.F., Milner, T.E., Kemp, N.J., Mendenhall, J.M., Diller, K.R., Welch, A.J.: Dehydration mechanism of optical clearing in tissue. J. Biomed. Opt. 11(4), 041117 (2006)

    Article  ADS  Google Scholar 

  31. Tuchin, V.V., Maksimova, I.L., Zimnyakov, D.A., Kon, I.L., Mavlutov, A.H., Mishin, A.A.: Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 2(4), 401–407 (1997)

    Article  ADS  Google Scholar 

  32. Genina, E.A., Bashkatov, A.N., Zubkova, E.A., Kamenskikh, T.G., Tuchin, V.V.: Measurements of Retinalamin diffusion coefficient in human sclera by optical spectroscopy. Opt. Las. Engin. 46, 915–920 (2008)

    Article  Google Scholar 

  33. Genina, E.A., Bashkatov, A.N., Sinichkin, YuP, Tuchin, V.V.: Optical clearing of skin under action of glycerol: ex vivo and in vivo investigations. Opt. Spectrosc. 109(2), 225–231 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izumi Nishidate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokokawa, T., Nishidate, I. Evaluation of light scattering properties and chromophore concentrations in skin tissue based on diffuse reflectance signals at isosbestic wavelengths of hemoglobin. Opt Rev 23, 332–339 (2016). https://doi.org/10.1007/s10043-015-0177-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0177-3

Keywords

Navigation