Skip to main content
Log in

Simple system for evaluating retardation of liquid crystal cells using grating type liquid crystal polarization splitters

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose a unique optical system for measuring the retardation of birefringent films using a pair of liquid crystal (LC) gratings; that is, the examined birefringent films are inserted between two LC gratings. Because the LC grating functions as a polarization beam splitter for circularly polarized light, the proposed system is optically equivalent to the measurement system using a pair of two circular polarizers. First, the polarization splitting performance of the LC grating is discussed. It is found that a sufficiently high voltage (such that the retardation is less than a half wavelength) has to be applied for the almost pure circularly polarized diffracted light. Next, the measurement of the retardation of a homogeneous LC cell as an examined birefringent film was demonstrated using the proposed method. The proposed method is revealed to have the same measurement performance as that of the conventional method using a pair of linear polarizers and has an advantage that there is no need for the optic axis of the test birefringent specimen to be set at a specific angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sato, S.: Liquid-crystal lens-cells with variable focal length. Jpn. J. Appl. Phys. 18, 1679 (1979)

    Article  ADS  Google Scholar 

  2. Hori, Y., Asai, K., Fukai, M.: Field-controllable liquid-crystal phase grating. Trans, I.E.E.E. Electron. Dev. 26, 1734 (1979)

    Article  Google Scholar 

  3. Ono, H., Emoto, A., Takahashi, F., Kawatsuki, N., Hasegawa, T.: Highly stable polarization gratings in photocrosslinkable polymer liquid crystals. J. Appl. Phys. 94, 1298 (2003)

    Article  ADS  Google Scholar 

  4. Honma, M., Nose, T.: Liquid-crystal blazed grating with azimuthally distributed liquid-crystal directors. Appl. Opt. 43, 5193 (2004)

    Article  ADS  Google Scholar 

  5. Crawford, G.P., Eakin, J.N., Radcliffe, M.D., Callan-Jones, A., Pelcovits, R.A.: Liquid-crystal diffraction gratings using polarization holography alignment techniques. J. Appl. Phys. 98, 123102 (2005)

    Article  ADS  Google Scholar 

  6. Presnyakov, V., Asatryan, K., Galstian, T., Chigrinov, V.: Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer. Opt. Express 14, 10564 (2006)

    Article  Google Scholar 

  7. Provenzano, C., Pagliusi, P., Cipparrone, G.: Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces. Appl. Phys. Lett. 89, 121105 (2006)

    Article  ADS  Google Scholar 

  8. Sarkissian, H., Serak, S.V., Tabiryan, N.V., Glebov, L.B., Rotar, V., Zeldovich, B.: Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals. Opt. Lett. 31, 2248 (2006)

    Article  ADS  Google Scholar 

  9. Blinov, L.M., Cipparrone, G., Mazzulla, A., Provenzano, C., Palto, S.P., Barnik, M.I., Arbuzov, A.V., Umanskii, B.A.: A nematic liquid crystal as an amplifying replica of a holographic polarization grating. Mol. Cryst. Liq. Cryst. 449, 147 (2006)

    Article  Google Scholar 

  10. Sarkissian, H., Park, B., Tabirian, N., Zeldovich, B.: Periodically aligned liquid crystal: potential application for projection displays. Mol. Cryst. Liq. Cryst. 451, 1 (2006)

    Article  Google Scholar 

  11. Chao, J.-C., Wu, W.-Y., Fuh, A.Y.-G.: Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method. Opt. Express 15, 16702 (2007)

    Article  ADS  Google Scholar 

  12. Oh, C., Escuti, M.J.: Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett. 33, 2287 (2008)

    Article  ADS  Google Scholar 

  13. Shi, L., McManamon, P.F., Bos, P.J.: Liquid crystal optical phase plate with a variable in-plane gradient. J. Appl. Phys. 104, 033109 (2008)

    Article  ADS  Google Scholar 

  14. Nersisyan, S.R., Tabiryan, N.V., Hoke, L., Steeves, D.M., Kimball, B.: Polarization insensitive imaging through polarization gratings. Opt. Express 17, 1817 (2009)

    Article  ADS  Google Scholar 

  15. Honma, M., Nose, T.: Temperature-independent achromatic liquid-crystal grating with spatially distributed twisted-nematic orientation. Appl. Phys. Express. 5, 062501 (2012)

    Article  ADS  Google Scholar 

  16. Honma, M., Nose, T.: Highly efficient twisted nematic liquid crystal polarization gratings achieved by microrubbing. Appl. Phys. Lett. 101, 041107 (2012)

    Article  ADS  Google Scholar 

  17. Bomzon, Z., Biener, G., Kleiner, V., Hasman, E.: Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. Opt. Lett. 27, 1141 (2002)

    Article  ADS  Google Scholar 

  18. Lin, D., Fan, P., Hasman, E., Brongersma, M.L.: Dielectric gradient metasurface optical elements. Science 345, 298 (2014)

    Article  ADS  Google Scholar 

  19. Pancharatnam, S.: Dielectric gradient metasurface optical elements. Proc. Indian Acad. Sci. A 44, 247 (1956)

    MathSciNet  Google Scholar 

  20. Todorov, T., Nikolova, L.: Spectrophotopolarimeter: fast simultaneous real-time measurement of light parameters. Opt. Lett. 17, 358 (1992)

    Article  ADS  Google Scholar 

  21. Gori, F.: Measuring Stokes parameters by means of a polarization grating. Opt. Lett. 24, 584–586 (1999)

    Article  ADS  Google Scholar 

  22. Provenzano, C., Cipparrone, G., Mazzulla, A.: Photopolarimeter based on two gratings recorded in thin organic films. Appl. Opt. 45, 3929 (2006)

    Article  ADS  Google Scholar 

  23. Escuti, M.J., Oh, C., Sánchez, C., Bastiaansen, C., Broer, D.J.: Photopolarimeter based on two gratings recorded in thin organic films. Proc. SPIE 6302, 630707 (2006)

    Google Scholar 

  24. Provenzano, C., Pagliusi, P., Mazzulla, A., Cipparrone, G.: Method for artifact-free circular dichroism measurements based on polarization grating. Opt. Lett. 35, 1822 (2010)

    Article  ADS  Google Scholar 

  25. Kudenov, M.W., Escuti, M.J., Dereniak, E.L., Oka, K.: White-light channeled imaging polarimeter using broadband polarization gratings. Appl. Opt. 50, 2283 (2011)

    Article  ADS  Google Scholar 

  26. Kudenov, M.W., Escuti, M.J., Hagen, N., Dereniak, E.L., Oka, K.: Snapshot imaging Mueller matrix polarimeter using polarization gratings. Opt. Lett. 37, 1367 (2012)

    Article  ADS  Google Scholar 

  27. Honma, M., Uchida, E., Saito, H., Harada, T., Muto, S., Nose, T.: Simple system for measuring optical rotation of glucose solution using liquid-crystal grating. Jpn. J. Appl. Phys. 54, 122601 (2015)

    Article  ADS  Google Scholar 

  28. Wong, C.F.: Birefringence measurement using a photoelastic modulator. Appl. Opt. 18, 3996 (1979)

    Article  ADS  Google Scholar 

  29. Oakberg, T.C.: Measurement of low-level strain birefringence in optical elements using a photoelastic modulator. Proc. SPIE 2873, 17 (1996)

    Article  ADS  Google Scholar 

  30. Berezhna, S.Y., Berezhnyy, I.V., Takashi, M.: Dynamic photometric imaging polarizer-sample-analyzer polarimeter: instrument for mapping birefringence and optical rotation. J. Opt. Soc. Am. A 18, 666 (2001)

    Article  ADS  Google Scholar 

  31. Goda, K., Kimura, M., Akahane, T.: Dynamic photometric imaging polarizer-sample-analyzer polarimeter: instrument for mapping birefringence and optical rotation. Jpn. J. Appl. Phys. 51, 081701 (2012)

    Article  ADS  Google Scholar 

  32. Wu, J.-S., Chou, C., Li, Y.-C., Yu, C.-J., Chuang, C.-H., Yu, L.-P., Chang, Y.-H., Lee, C.-C.: Two-dimensional distributions of five cell parameters of twisted nematic liquid crystal device by numerical photometric ellipsometer. Jpn. J. Appl. Phys. 51, 086601 (2012)

    Article  ADS  Google Scholar 

  33. Kowa, H., Muraki, K., Tsukiji, M., Takayanagi, A., Umeda, N.: Simultaneous measurement of linear and circular birefringence with heterodyne interferometry. Proc. SPIE 2873, 29 (1996)

    Article  ADS  Google Scholar 

  34. Hwang, S.J.: Precise optical retardation measurement of nematic liquid crystal display using the phase-sensitive technique. J. Disp. Tech. 1, 77 (2005)

    Article  Google Scholar 

  35. Pin, W., Asundi, A.: Full-field retardation measurement of a liquid crystal cell with a phase shift polariscope. Appl. Opt. 47, 4391 (2008)

    Article  ADS  Google Scholar 

  36. Nose, T., Kamata, K., Takeuchi, T., Okano, K., Fujita, N., Muraguchi, H., Ozaki, N., Honma, M., Ito, R.: Determination of birefringence and slow axis distribution using an interferometric measurement system with liquid crystal phase shifter. Appl. Opt. 53, 7230 (2014)

    Article  ADS  Google Scholar 

  37. Honma, M., Nose, T.: Polarization-independent liquid crystal grating fabricated by microrubbing process. Jpn. J. Appl. Phys. 42, 6992 (2003)

    Article  ADS  Google Scholar 

  38. Tabiryan, N.V., Nersisyan, S.R., White, T.J., Bunning, T.J., Steeves, D.M., Kimball, B.R.: All-optical diffractive/transmissive switch based on coupled cycloidal diffractive waveplates. AIP Adv. 1, 022153 (2011)

    Article  ADS  Google Scholar 

  39. Marrucci, L., Manzo, C., Paparo, D.: Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation. Appl. Phys. Lett. 88, 221102 (2006)

    Article  ADS  Google Scholar 

  40. Culbreath, C., Glazar, N., Yokoyama, H.: Note: automated maskless micro-multidomain photoalignment. Rev. Sci. Instrum. 82, 126107 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) 25390058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michinori Honma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honma, M., Nose, T. Simple system for evaluating retardation of liquid crystal cells using grating type liquid crystal polarization splitters. Opt Rev 23, 187–194 (2016). https://doi.org/10.1007/s10043-015-0173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0173-7

Keywords

Navigation