Skip to main content

Advertisement

Log in

Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor

  • Special Section: Regular Paper
  • The 5th Asian and Pacific-Rim Symposium on Biophotonics, (APBP’15), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The anisotropy factor g, one of the optical properties of biological tissues, has a strong influence on the calculation of the scattering coefficient μ s in inverse Monte Carlo (iMC) simulations. It has been reported that g has the wavelength and absorption dependence; however, few attempts have been made to calculate μ s using g values by taking the wavelength and absorption dependence into account. In this study, the angular distributions of scattered light for biological tissue phantoms containing hemoglobin as a light absorber were measured by a goniometric optical setup at strongly (405 nm) and weakly (664 nm) absorbing wavelengths to obtain g. Subsequently, the optical properties were calculated with the measured values of g by integrating sphere measurements and an iMC simulation, and compared with the results obtained with a conventional g value of 0.9. The μ s values with measured g were overestimated at the strongly absorbing wavelength, but underestimated at the weakly absorbing wavelength if 0.9 was used in the iMC simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Greve, B., Raulin, C.: Professional errors caused by lasers and intense pulsed light technology in dermatology and aesthetic medicine: preventive strategies and case studies. Dermatol. Surg. 28(2), 156–161 (2002)

    Google Scholar 

  2. Haedersdal, M.: Side effects from the pulsed dye laser: the importance of skin pigmentation and skin redness. Acta Derm. Venereol. 78(6), 445–450 (1998)

    Article  Google Scholar 

  3. Hammes, S., Karsai, S., Metelmann, H.-R., Pohl, L., Kaiser, K., Park, B.-H., Raulin, C.: Treatment errors resulting from use of lasers and IPL by medical laypersons: results of a nationwide survey. J. Dtsch. Dermatol. Ges. 11(2), 149–156 (2013)

    Google Scholar 

  4. Nilsson, A.M.K., Sturesson, C., Liu, D.L., Andersson-Engels, S.: Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy. Appl. Opt. 37(7), 1256–1267 (1998)

    Article  ADS  Google Scholar 

  5. Yaroslavsky, A.N., Schulze, P.C., Yaroslavsky, I.V., Schober, R., Ulrich, F., Schwarzmaier, H.-J.: Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47(12), 2059–2073 (2002)

    Article  Google Scholar 

  6. Simpson, C.R., Kohl, M., Essenpreis, M., Cope, M.: Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol. 43(9), 2465–2478 (1998)

    Article  Google Scholar 

  7. Ritz, J.P., Roggan, A., Isbert, C., Muller, G., Buhr, H.J., Germer, C.T.: Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm. Lasers Surg. Med. 29(3), 205–212 (2001)

    Article  Google Scholar 

  8. Salomatina, E., Jiang, B., Novak, J., Yaroslavsky, A.N.: Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 064026 (2006)

    Article  ADS  Google Scholar 

  9. Friebel, M., Roggan, A., Muller, G.J., Meinke, M.C.: Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J. Biomed. Opt. 11(3), 034021 (2006)

    Article  ADS  Google Scholar 

  10. Terada, T., Nanjo, T., Honda, N., Ishii, K., Awazu, K.: Error analysis of tissue optical properties determined by double-integrating sphere system and inverse Monte Carlo method. In: Proceedings of SPIE, vol 7897, 78971W (2011)

  11. Horibe, T., Ishii, K., Honda, N., Awazu, K.: Improvement of scattering coefficient estimation in inverse Monte Carlo calculation by considering wavelength dependence of refractive index and sample thickness. In: Proceedings of CLSM 2013, pp. 2–11 (2013)

  12. Fukutomi, D., Ishii, K., Awazu, K.: Highly accurate scattering spectra of strongly absorbing samples obtained using an integrating sphere system by considering the angular distribution of diffusely reflected light. Lasers Med. Sci. 30(4), 1335–1340 (2015)

    Article  Google Scholar 

  13. Hall, G., Jacques, S.L., Eliceiri, K.W., Campagnola, P.J.: Goniometric measurements of thick tissue using Monte Carlo simulations to obtain the single scattering anisotropy coefficient. Biomed. Opt. Express 3(11), 2707–2719 (2012)

    Article  Google Scholar 

  14. Fernandez-Oliveras, A., Rubino, M., Perez, M.M.: Scattering anisotropy measurements in dental tissues and biomaterials. J. Eur. Opt. Soc. Rapid. Publ. 7, 12016 (2012)

    Article  Google Scholar 

  15. Sardar, D.K., Mayo, M.L., Glickman, R.D.: Optical characterization of melanin. J. Biomed. Opt. 6(4), 404–411 (2001)

    Article  ADS  Google Scholar 

  16. Forster, F.K., Kienle, A., Michels, R., Hibst, R.: Phase function measurements on nonspherical scatterers using a two-axis goniometer. J. Biomed. Opt. 11(2), 024018 (2006)

    Article  ADS  Google Scholar 

  17. Saccomandi, P., Vogel, V., Bazrafshan, B., Maurer, J., Schena, E., Vogl, T.J., Silvestri, S., Mantele, W.: Estimation of anisotropy coefficient of swine pancreas, liver and muscle at 1064 nm based on goniometric technique. J. Biophotonics 8(5), 422–428 (2014)

    Article  Google Scholar 

  18. Kodach, V.M., Faber, D.J., van Marle, J., van Leeuwen, T.G., Kalkman, J.: Determination of the scattering anisotropy with optical coherence tomography. Opt. Express 19(7), 6131–6140 (2011)

    Article  ADS  Google Scholar 

  19. Kienle, A., Patterson, M.S., Ott, L., Steiner, R.: Determination of the scattering coefficient and the anisotropy factor from laser Doppler spectra of liquids including blood. Appl. Opt. 35(19), 3404–3412 (1996)

    Article  ADS  Google Scholar 

  20. Wang, P., Li, Y., Chen, B.: Measurement of the anisotropy factor with azimuthal light backscattering. Optoelectron. Lett. 10(6), 470–472 (2014)

    Article  ADS  Google Scholar 

  21. Zamora-Rojasa, E., Aernoutsb, B., Garrido-Varoa, A., Perez-Marina, D., Guerrero-Ginela, J.E., Saeysb, W.: Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue. Innov. Food Sci. Emerg. Technol. 19, 218–226 (2013)

    Article  Google Scholar 

  22. Tuchin, V.V.: Tissue Optics, 2nd edn, pp. 132–142. SPIE, Washington (2007)

    Book  Google Scholar 

  23. Wang, L., Jacques, S.L., Zheng, L.: MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput. Methods Programs Biomed. 47(2), 131–146 (1995)

    Article  Google Scholar 

  24. Oregon Medical Laser Center at Providence St. Vincent Medical Center, http://omlc.ogi.edu/software/mc/

  25. Wen, X., Tuchin, V.V., Luo, Q., Zhu, D.: Controling the scattering of Intralipid by using optical clearing agents. Phys. Med. Biol. 54(22), 6917–6930 (2009)

    Article  Google Scholar 

  26. Staveren, H.J., Moes, C.J.M., Marie, J., Prahl, S.A., Gemert, M.J.C.: Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm. Appl. Opt. 30(31), 4507–4514 (1991)

    Article  ADS  Google Scholar 

  27. Saidi, I.S., Jacques, S.L., Tittel, F.K.: Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt. 34(31), 7410–7418 (1995)

    Article  ADS  Google Scholar 

  28. Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D 38(15), 2543–2555 (2005)

    Article  ADS  Google Scholar 

  29. Flock, S.T., Wilson, B.C., Patterson, M.S.: Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm. J. Med. Phys. 14(5), 835–841 (1987)

    Article  Google Scholar 

  30. Henyey, L.G., Greenstein, J.L.: Diffuse radiation in galaxy. Astrophys. J. 93, 70–83 (1941)

    Article  ADS  MATH  Google Scholar 

  31. Tuchin, V.V.: Tissue Optics, 2nd edn, pp. 3–22. SPIE, Washington (2007)

    Book  Google Scholar 

  32. Mourant, J.R., Boyer, J., Hielscher, A.H., Bigio, I.J.: Influence of the scattering phase function on light transport measurements in turbid media performed with small source–detector separations. Opt. Lett. 21(7), 546–548 (1996)

    Article  ADS  Google Scholar 

  33. Yaroslavsky, A.N., Yaroslavsky, I.V., Goldbach, T., Schwarzmaier, H.-J.: Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements. J. Biomed. Opt. 4(1), 47–53 (1999)

    Article  ADS  Google Scholar 

  34. Kienle, A., Forster, F.K., Hibst, R.: Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance. Opt. Lett. 26(20), 1571–1573 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunio Awazu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukutomi, D., Ishii, K. & Awazu, K. Determination of the scattering coefficient of biological tissue considering the wavelength and absorption dependence of the anisotropy factor. Opt Rev 23, 291–298 (2016). https://doi.org/10.1007/s10043-015-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0161-y

Keywords

Navigation