Skip to main content
Log in

Mechanical scanner-less multi-beam confocal microscope with wavefront modulation

  • Special Section: Short Note
  • The 5th Asian and Pacific-Rim Symposium on Biophotonics, (APBP’15), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We propose a novel full-electronically controlled laser confocal microscope in which a liquid-crystal-on-silicon spatial light modulator and a custom CMOS imaging sensor are synchronized for performing multi-beam confocal imaging. Adaptive wavefront modulation for functional multi-beam excitation can be achieved by displaying appropriate computer generated holograms on the spatial light modulator, in consideration of the numerical aperture of the focusing objective. We also adopted a custom CMOS imaging sensor to realize multi-beam confocal microscopy without any physical pinhole. The confocality of this microscope was verified by improvements in transverse and axial resolutions of fluorescent micro-beads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Pawley, J.B. (ed.): Handbook of biological confocal microscopy, 3rd ed. Springer, USA (2006)

  2. Kagawa, K., Seo, M.-W., Yasutomi, K., Terakawa, S., Kawahito S.: Multi-beam confocal microscopy based on a custom image sensor with focal-plane pinhole array effect. Opt. Express 21, 1417–1429 (2013)

    Article  ADS  Google Scholar 

  3. Igasaki, Y., Li, F., Yoshida, N., Toyoda, H., Inoue, T., Kobayashi, Y., Mukohzaka, N., Hara, T.: High efficiency electrically-addressable phase-only spatial light modulator. Opt. Rev. 6, 339–344 (1999)

    Article  Google Scholar 

  4. Inoue, T., Tanaka, H., Fukuchi, N., Takumi, M., Matsumoto, N., Hara, T., Yoshida, N., Igasaki, Y., Kobayashi, Y.: LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulation. Proc. SPIE 6487, 64870Y (2007)

    Article  ADS  Google Scholar 

  5. Takiguchi, Y., Otsu, T., Inoue, T., Toyoda, H.: Self-distortion compensation of spatial light modulator under temperature-varying conditions. Opt. Express 22, 16087–16098 (2014)

    Article  ADS  Google Scholar 

  6. Huang, H., Inoue, T., Tanaka, H.: Stabilized high-accuracy correction of ocular aberrations with liquid crystal on silicon spatial light modulator in adaptive optics retinal imaging system. Opt. Express 19, 15026–15040 (2011)

    Article  ADS  Google Scholar 

  7. Goodman, J.W.: Introduction to fourier optics, 3rd ed. Roberts & Company Englewood CO. Springer, USA (2005)

  8. Gerchberg, W.O., Saxton, R.W.: A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  9. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  10. Ripoll, O., Kettunen, V., Herzig, H.P.: Review of iterative Fourier-transform algorithms for beam shaping applications. Opt. Eng. 43, 2549–2556 (2004)

    Article  ADS  Google Scholar 

  11. Denk, W., Strickler, J.H., Webb, W.W.: Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  12. Begley, R.F., Harvey, A.B., Byer, R.L.: Coherent anti-Stokes Raman spectroscopy. Appl. Phys. Lett. 25, 387–390 (1974)

    Article  ADS  Google Scholar 

  13. Ando, T., Ohtake, Y., Inoue, T., Itoh, H., Matsumoto, N., Fukuchi, N.: Shaping tight-focusing patterns of linearly polarized beams through elliptic apertures. Appl. Phys. Lett. 92, 021116 (2008)

    Article  ADS  Google Scholar 

  14. Takiguchi, Y., Ando, T., Ohtake, Y., Inoue, T., Toyoda, H.: Effects of dielectric planar interface on tight focusing coherent beam: direct comparison between observations and vectorial calculation of lateral focal patterns. J. Opt. Soc. Am. A 30, 2605–2610 (2013)

    Article  ADS  Google Scholar 

  15. Otsu, T., Ando, T., Takiguchi, Y., Ohtake, Y., Toyoda, H., Itoh, H.: Direct evidence for three-dimensional off-axis trapping with single Laguerre-Gaussian beam. Sci. Rep. 4, 4579 (2014)

    Article  ADS  Google Scholar 

  16. Otsu, T., Ando, T., Takiguchi, Y., Ohtake, Y., Toyoda, H., Itoh, H.: Precise revolution control in three-dimensional off-axis trapping with single Laguerre-Gaussian beam. Opt. Rev. 22, 170–173 (2015)

    Article  Google Scholar 

  17. Hell, S.W., et al.: Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. Hiruma (President), T. Hara (Director) and H. Toyoda of Hamamatsu Photonics for their numerous encouragements throughout this work. We also thank T. Otsu-Hyodo, and K. Watanabe for their helpful support in the experiments, and Y. Ohtake and T. Ando for valuable discussions. This work is partially supported by Development of Systems and Technology for Advanced Measurement and Analysis, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Takiguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takiguchi, Y., Seo, MW., Kagawa, K. et al. Mechanical scanner-less multi-beam confocal microscope with wavefront modulation. Opt Rev 23, 364–368 (2016). https://doi.org/10.1007/s10043-015-0159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0159-5

Keywords

Navigation