Multi-spectral temperature measurement method for gas turbine blade

Abstract

One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Khalid, A.H., Kontis, K., Behtash, H.Z.: Phosphor thermometry in gas turbines: consideration factors. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 224(7), 745–755 (2010)

    Article  Google Scholar 

  2. 2.

    Kerr, C., Paul, I.: Optical Pyrometry for gas turbine aeroengines. Sens. Rev. 24(4), 378–386 (2004)

    Article  Google Scholar 

  3. 3.

    Taniguchi, T., Tanaka, R., Shinoda, Y., et al.: Application of an Optical Pyrometer to Newly Developed Industrial Gas Turbine. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Am. Soci. Mech. Eng. (2012)

  4. 4.

    Taniguchi, T., Sanbonsugi, K., Ozaki, Y., et al.: Temperature measurement of high speed rotating turbine blades using a pyrometer. ASME Turbo Expo 2006: Power for Land, Sea, and Air. Am. Soci. Mech. Eng. (2006)

  5. 5.

    Kerr, C., Paul, I.: An overview of the measurement errors associated with gas turbine aeroengine pyrometer systems. Meas. Sci. Technol. 13(6), 873 (2002)

    Article  ADS  Google Scholar 

  6. 6.

    Atkinson, W. H., Strange, R.R.: Turbine pyrometry for advanced engines. 23rd Joint Propulsion Conference. Vol. 1 (1987)

  7. 7.

    Gao, S., Wang, L., Feng, C., et al.: Multi-spectral pyrometer for narrow space with high ambient temperature. Opt. Rev. 22(4), 605–613 (2015)

    Article  Google Scholar 

  8. 8.

    Gao, S., Wang, L., Feng, C., et al.: Monitoring temperature for gas turbine blade: correction of reflection model. Opt. Eng. 54(6), 065102–065102 (2015)

    Article  ADS  Google Scholar 

  9. 9.

    Howell, J.R., Siegel, R., Menguc, M.P.: Thermal radiation heat transfer. CRC press (2011)

  10. 10.

    Gonzalez, A.Y., Pilgrim, C.C., Feist, J.P., et al.: On-line Temperature Measurement Inside a Thermal Barrier Sensor Coating during Engine Operation. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Am. Soci. Mech. Eng. (2014)

  11. 11.

    Pfefferkorn, F. E., Incropera, F. P., and Shin, Y. C.: Surface temperature measurement of semi-transparent ceramics by long-wavelength pyrometry. ASME 2002 International Mechanical Engineering Congress and Exposition. Am. Soci. Mech. Eng. (2002)

  12. 12.

    Nickel, J., Pucher, H., and Ldtke, M.: Numerical correction of pyrometry data from gas turbines (2003)

  13. 13.

    Gonzlez-Fernndez, L., Del Campo, L., Prez-Sez, R.B., et al.: Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films. J. Alloys Comp. 513, 101–106 (2012)

    Article  Google Scholar 

  14. 14.

    Duvaut, T., Georgeault, D., Beaudoin, J.L.: Multiwavelength infrared pyrometry: optimization and computer simulations[J]. Infrared Phys. Technol. 36(7), 1089–1103 (1995)

    Article  ADS  Google Scholar 

  15. 15.

    Wen, C.D., Mudawar, I.: Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models[J]. Int. J. Heat Mass Transf. 47(17), 3591–3605 (2004)

    Article  Google Scholar 

  16. 16.

    Madura, H., Kastek, M., Pitkowski, T.: Automatic compensation of emissivity in three-wavelength pyrometers[J]. Infrared Phys. Technol. 51(1), 1–8 (2007)

    Article  ADS  Google Scholar 

  17. 17.

    DeWitt, D.P., Nutter, G.D. (eds.): Theory and practice of radiation thermometry. Wiley, New York (1988)

    Google Scholar 

  18. 18.

    Lefebvre, A.H.: Gas turbine combustion. CRC Press (2010)

  19. 19.

    Rothman, L.S., Gordon, I.E., Barbe, A., et al.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9), 533–572 (2009)

    Article  ADS  Google Scholar 

  20. 20.

    Rothman, L.S., Gordon, I.E., Barber, R.J., et al.: HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010)

    Article  ADS  Google Scholar 

  21. 21.

    Sparrow, E.M., and Cess, R.D.: Radiation heat transfer. Series in Thermal and Fluids Engineering, New York: McGraw-Hill, Augmented ed. 1 (1978)

  22. 22.

    Gao, S., Wang, L., Feng, C.: Multi-spectral pyrometer for gas turbine blade temperature measurement. International Society for Optics and Photonics, SPIE Optical Engineering+ Applications (2014)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shan Gao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, S., Feng, C., Wang, L. et al. Multi-spectral temperature measurement method for gas turbine blade. Opt Rev 23, 17–25 (2016). https://doi.org/10.1007/s10043-015-0155-9

Download citation

Keywords

  • Gas turbine blade
  • Multi-spectral pyrometer
  • Emissivity
  • Combustion gas
  • Reflection