Skip to main content

Advertisement

Log in

Optically deviated focusing method based high-speed SD-OCT for in vivo retinal clinical applications

  • Special Section: Regular Paper
  • The 5th Asian and Pacific-Rim Symposium on Biophotonics, (APBP’15), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The aim of this study is to provide accurately focused, high-resolution in vivo human retinal depth images using an optically deviated focusing method with spectral-domain optical coherence tomography (SD-OCT) system. The proposed method was applied to increase the retinal diagnosing speed of patients with various values of retinal distances (i.e., the distance between the crystalline eye lens and the retina). The increased diagnosing speed was facilitated through an optical modification in the OCT sample arm configuration. Moreover, the optical path length matching process was compensated using the proposed optically deviated focusing method. The developed system was mounted on a bench-top cradle to overcome the motion artifacts. Further, we demonstrated the capability of the system by carrying out in vivo retinal imaging experiments. The clinical trials confirmed that the system was effective in diagnosing normal and abnormal retinal layers as several retinal abnormalities were identified using non-averaged single-shot OCT images, which demonstrate the feasibility of the method for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A.: Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. van Velthoven, M.E., Faber, D.J., Verbraak, F.D., van Leeuwen, T.G., de Smet, M.D.: Recent developments in optical coherence tomography for imaging the retina. Progress Retinal Eye Res 26(1), 57–77 (2007)

    Article  Google Scholar 

  3. Hee, M.R., Izatt, J.A., Swanson, E.A., Huang, D., Schuman, J.S., Lin, C.P., Puliafito, C.A., Fujimoto, J.G.: Optical coherence tomography of the human retina. Arch. Ophthalmol 113(3), 325–332 (1995)

    Article  Google Scholar 

  4. Guedes, V., Schuman, J.S., Hertzmark, E., Wollstein, G., Correnti, A., Mancini, R., Lederer, D., Voskanian, S., Velazquez, L., Pakter, H.M.: Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110(1), 177–189 (2003)

    Article  Google Scholar 

  5. Kim, J., Sohn, B.-S., Milner, T.E.: Real-time retinal imaging with a parallel OCT using a CMOS smart array detector. J Korean Phys Soc 51, 1787 (2007)

    Article  Google Scholar 

  6. Jung, W., Kim, J., Jeon, M., Chaney, E.J., Stewart, C.N., Boppart, S.A.: Handheld optical coherence tomography scanner for primary care diagnostics. Biomed Eng IEEE Trans 58(3), 741–744 (2011)

    Article  Google Scholar 

  7. Cho, N.H., Park, K., Wijesinghe, R.E., Shin, Y.S., Jung, W., Kim, J.: Development of real-time dual-display handheld and bench-top hybrid-mode SD-OCTs. Sensors 14(2), 2171–2181 (2014)

    Article  Google Scholar 

  8. Gambichler, T., Moussa, G., Sand, M., Sand, D., Altmeyer, P., Hoffmann, K.: Applications of optical coherence tomography in dermatology. J Dermatol Sci 40(2), 85–94 (2005)

    Article  Google Scholar 

  9. Cho, N.H., Jang, J.H., Jung, W., Kim, J.: In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope. Opt Express 22(8), 8985–8995 (2014)

    Article  ADS  Google Scholar 

  10. Feldchtein, F., Gelikonov, V., Iksanov, R., Gelikonov, G., Kuranov, R., Sergeev, A., Gladkova, N., Ourutina, M., Reitze, D., Warren, J.: In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt. Express 3(6), 239–250 (1998)

    Article  ADS  Google Scholar 

  11. Lee, C., Lee, S.-Y., Kim, J.-Y., Jung, H.-Y., Kim, J.: Optical sensing method for screening disease in melon seeds by using optical coherence tomography. Sensors 11(10), 9467–9477 (2011)

    Article  Google Scholar 

  12. Prykäri, T., Czajkowski, J., Alarousu, E., Myllylä, R.: Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry. Opt Rev 17(3), 218–222 (2010)

    Article  Google Scholar 

  13. Copete, S., Flores-Moreno, I., Montero, J.A., Duker, J.S., Ruiz-Moreno, J.M.: Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes. Br J Ophthalmol 98(3), 334–338 (2014)

    Article  Google Scholar 

  14. De Niro, J.E., McDonald, H.R., Johnson, R.N., Jumper, J.M., Fu, A.D., Cunningham Jr, E.T., Lujan, B.J.: Sensitivity of fluid detection in patients with neovascular AMD using spectral domain optical coherence tomography high-definition line scans. Retina 34(6), 1163–1166 (2014)

    Article  Google Scholar 

  15. Jonathan, E.: Dual reference arm low-coherence interferometer-based reflectometer for optical coherence tomography (OCT) application. Optics Commun 252(1), 202–211 (2005)

    Article  ADS  Google Scholar 

  16. Iftimia, N.V., Hammer, D.X., Bigelow, C.E., Ustun, T., de Boer, J.F., Ferguson, R.D.: Hybrid retinal imager using line-scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Opt. Express 14(26), 12909–12914 (2006)

    Article  ADS  Google Scholar 

  17. Nakamura, Y., Makita, S., Yamanari, M., Itoh, M., Yatagai, T., Yasuno, Y.: High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography. Opt Express 15(12), 7103–7116 (2007)

    Article  ADS  Google Scholar 

  18. Podoleanu, A.G., Rosen, R.B.: Combinations of techniques in imaging the retina with high resolution. Progress Retinal Eye Res 27(4), 464–499 (2008)

    Article  Google Scholar 

  19. Tao, Y.K., Farsiu, S., Izatt, J.A.: Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography. Biomed Opt Express 1(2), 431–440 (2010)

    Article  Google Scholar 

  20. Qi, B., Phillip Himmer, A., Maggie Gordon, L., Victor Yang, X., David Dickensheets, L., Alex Vitkin, I.: Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror. Opt Commun 232(1), 123–128 (2004)

    Article  ADS  Google Scholar 

  21. Pircher, M., Götzinger, E., Hitzenberger, C.K.: Dynamic focus in optical coherence tomography for retinal imaging. J Biomed Opt 11(5), 054013–054016 (2006)

    Article  Google Scholar 

  22. Lexer, F., Hitzenberger, C., Drexler, W., Molebny, S., Sattmann, H., Sticker, M., Fercher, A.: Dynamic coherent focus OCT with depth-independent transversal resolution. J Modern Opt 46(3), 541–553 (1999)

    Article  ADS  Google Scholar 

  23. Murali, S., Lee, K., Rolland, J.: Invariant resolution dynamic focus OCM based on liquid crystal lens. Opt Express 15(24), 15854–15862 (2007)

    Article  ADS  Google Scholar 

  24. Schmitt, J., Lee, S., Yung, K.: An optical coherence microscope with enhanced resolving power in thick tissue. Opt Commun 142(4), 203–207 (1997)

    Article  ADS  Google Scholar 

  25. Wojtkowski, M., Srinivasan, V., Ko, T., Fujimoto, J., Kowalczyk, A., Duker, J.: Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 12(11), 2404–2422 (2004)

    Article  ADS  Google Scholar 

  26. Zhang, K., Kang, J.: Real-time numerical dispersion compensation using graphics processing unit for Fourier-domain optical coherence tomography. Electron Lett 47(5), 309–310 (2011)

    Article  Google Scholar 

  27. Jeon, M., Kim, J., Jung, U., Lee, C., Jung, W., Boppart, S.A.: Full-range k-domain linearization in spectral-domain optical coherence tomography. Appl Opt 50(8), 1158–1163 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Industrial Strategic Technology Development Program, Grant No. 10047943; the “Development of Micro-surgical Apparatus based on 3D Tomographic Operating Microscope” program, funded by the Ministry of Trade, Industry & Energy (MI, Korea, No. 10047943). This study was also supported by the BK21 Plus project funded by the Ministry of Education, Korea (21A20131600011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansik Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijesinghe, R.E., Park, K., Kim, P. et al. Optically deviated focusing method based high-speed SD-OCT for in vivo retinal clinical applications. Opt Rev 23, 307–315 (2016). https://doi.org/10.1007/s10043-015-0154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0154-x

Keywords

Navigation