Skip to main content
Log in

Optimal mirror reflectivity for transparency of a thin-film absorbent in a Fabry–Perot cavity

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We could make a thin-film absorbent virtually transparent by enclosing it in a Fabry–Perot cavity. One requirement to realize the phenomenon is that the cavity consists of a pair of mirrors with optimal reflectivity. We calculate the reflectivity to give the highest transmittance through the cavity for various kinds of thin films. An empirical equation to reproduce the optimal reflectivity is given, in which the first term inversely depends on the film thickness and the second term is related to multiplication of the thickness and the dielectric constant of the thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Egashira, K., Terasaki, A., Kondow, T.: Build-up processes of an optical cavity enclosing an absorbent thin film: computational study by the CIP method. Eur. Phys. J. D 66, 92 (2012)

    Article  ADS  Google Scholar 

  2. Terasaki, A., Kondow, T., Egashira, K.: Continuous-wave cavity ringdown spectroscopy applied to solids: properties of a Fabry–Perot cavity containing a transparent substrate. J. Opt. Soc. Am. B 22, 675–686 (2005)

    Article  ADS  Google Scholar 

  3. Egashira, K., Terasaki, A., Kondow, T.: Infrared spectra of organic monolayer films in a standing wave measured by photon-trap spectroscopy. J. Chem. Phys. 126, 221102 (2007)

    Article  ADS  Google Scholar 

  4. Egashira, K., Terasaki, A., Kondow, T.: Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave. Appl. Opt. 49, 1151–1157 (2010)

    Article  ADS  Google Scholar 

  5. Pu, M., Feng, Q., Wang, M., Hu, C., Huang, C., Ma, X., Zhao, Z., Wang, C., Luo, X.: Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012)

    Article  ADS  Google Scholar 

  6. Kats, M.A., Sharma, D., Lin, J., Genevet, P., Blanchard, R., Yang, Z., Qazilbash, M.M., Basov, D.N., Ramanathan, S., Capasso, F.: Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012)

    Article  ADS  Google Scholar 

  7. Chong, Y.D., Ge, L., Cao, H., Stone, A.D.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  ADS  Google Scholar 

  8. Li, S., Luo, J., Anwar, S., Li, S., Lu, W., Hang, Z.H., Lai, Y., Hou, B., Shen, M., Wang, C.: Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation. Phys. Rev. B 91, 220301 (2015)

    Article  ADS  Google Scholar 

  9. Takewaki, H., Nishiguchi, A., Yabe, T.: Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations. J. Comput. Phys. 61, 261–268 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Yabe, T., Xiao, F., Utsumi, T.: The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 169, 556–593 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Watanabe, S., Kakuta, Y., Hashimoto, O.: Analysis of absorbing characteristics of one-layer EM-absorber using CIP method. IEICE Trans. Electron. E89-C, 51–60 (2006)

    Article  ADS  Google Scholar 

  12. Okubo, K., Yoshida, Y., Takeuchi, N.: Consideration of treatment of the boundary between different media in electromagnetic field analysis using the constrained interpolation profile method. IEEE Trans. Antenna Propag. 55, 485–489 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  13. Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J.M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H.: Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  ADS  Google Scholar 

  14. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  15. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)

    Article  ADS  Google Scholar 

  16. Born, M., Wolf, E.: Principles of Optics, 6th edn. Pergamon Press, Oxford (1980)

    Google Scholar 

  17. Macleod, H.A.: Thin-Film Optical Filters, 2nd edn. Adam Hilger, Bristol (1986)

    Book  Google Scholar 

Download references

Acknowledgments

The present study has been supported by the Special Cluster Research Project of Genesis Research Institute, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Egashira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egashira, K. Optimal mirror reflectivity for transparency of a thin-film absorbent in a Fabry–Perot cavity. Opt Rev 22, 888–892 (2015). https://doi.org/10.1007/s10043-015-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0144-z

Keywords

Navigation