Skip to main content
Log in

Compressed polarimetric ghost imaging of different material's reflective objects

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In recent years, ghost imaging has been received more and more attention. Here, a computational polarimetric ghost imaging of the different material reflective objects which uses compressive sensing algorithm is reported. In contrast with conventional ghost imaging, the scheme obtains the depolarization parameter of the reflected light from the objects, and both the polarization and reflected information of the objects can be retrieved. The results show that this imaging technique provides higher effective recognition ability to distinguish the different material objects than that of conventional ghost imaging when they have different polarization parameters. A simple multi-image information fusion method is proposed to improve the efficiency of object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shapiro, J.H., Boyd, R.W.: The physics of ghost imaging, Quantum Inf. Process. 11, 949 (2012)

    Article  MATH  Google Scholar 

  2. Duan, D.Y., Zhang, L., Du, S.J., Xia, Y.: Phase modulation pseudocolor encoding ghost imaging. Chin. Phys. B 24, 024202 (2015)

    Article  ADS  Google Scholar 

  3. Li, L.Z., Yao, X.R., Liu, X.F., Yu, W.K., Zhai, G.J.: Super-resolution ghost imaging via compressed sensing. Acta Phys. Sin. 63, 224201 (2015). (in Chinese)

    Google Scholar 

  4. Zhong, Y.J., Liu, J., Liang, W.Q., Zhao, S.M.: Multiple speckle patterns differential compressive ghost imaging. Acta Phys. Sin. 64, 014202 (2015). (in Chinese)

    Google Scholar 

  5. Gao, L., Tian, J., Lin, H.L.: Experimental detection of depth of field for a thermal light lensless ghost imaging system. Chin. Phys. Lett. 32, 014202 (2015)

    Article  ADS  Google Scholar 

  6. Hardy, N.D., Shapiro, J.H.: Computational ghost imaging versus imaging laser radar for three-dimensional imaging. Phys. Rev. A 87, 023820 (2013)

    Article  ADS  Google Scholar 

  7. Tanha, M., Ahmadi-Kandjani, S., Kheradmand, R., Ghanbari, H.: Computational fluorescence ghost imaging. Eur. Phys. J. D 67, 44 (2013)

    Article  ADS  Google Scholar 

  8. Erkmen, B.: Computational ghost imaging for remote sensing. J. Opt. Soc. Am. A: 29, 782 (2012)

    Article  ADS  Google Scholar 

  9. Katz, O., Bromberg, Y., Silberberg, Y.: Compressive ghost imaging. Appl. Phys. Lett. 95, 131110 (2009)

    Article  ADS  Google Scholar 

  10. Zhao, S.M., Zhuang, P.: Correspondence normalized ghost imaging on compressive sensing. Chin. Phys. B 23, 054203 (2014)

    Article  ADS  Google Scholar 

  11. Magana-Loaiza, O.S., Howland, G.A., Malik, M., Howell, J.C., Boyd, R.W.: Compressive object tracking using entangled photons. Appl. Phys. Lett. 102, 231104 (2013)

    Article  ADS  Google Scholar 

  12. Katkovnik, V., Astola, J.: Compressive sensing computational ghost imaging. J. Opt. Soc. Am. A 29, 1556 (2012)

    Article  ADS  Google Scholar 

  13. Zhao, C.Q., Gong, W.L., Chen, M.L., Li, E.R., Wang, H., Xu, W.D., Han, S.S.: Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 101, 141123 (2012)

    Article  ADS  Google Scholar 

  14. Ferri, F., Magatti, D., Lugiato, L.A., Gatti, A.: Differential ghost imaging. Phys. Rev. Lett. 104, 253603 (2010)

    Article  ADS  Google Scholar 

  15. Bina, M., Magatti, D., Molteni, M., Gatti, A., Lugiato, L.A., Ferri, F.: Backscattering differential ghost imaging in turbid media. Phys. Rev. Lett. 110, 083901 (2013)

    Article  ADS  Google Scholar 

  16. Li, M.F., Zhang, Y.R., Luo, K.H., Wu, L.A., Fan, H.: Time-correspondence differential ghost imaging. Phys. Rev. A 87, 033813 (2013)

    Article  ADS  Google Scholar 

  17. Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J.: 3D computational imaging with single-pixel detectors. Science 340, 844 (2013)

    Article  ADS  Google Scholar 

  18. Zhao C, Gong W, Jiao J, Li E, Chen M, Wang H, Xu W, Han S.: Threedimensional ghost imaging ladar. arXiv:1301.5767 (2013)

  19. Collett, E.: Polarized Light: Fundamentals and Applications. Marcel Dekker, New York (1993)

    Google Scholar 

  20. Shirai, T., Kellock, H., Setälä, T., Friberg, A.T.: Visibility in ghost imaging with classical partially polarized electromagnetic beams. Opt. Lett. 36, 2880 (2011)

    Article  ADS  Google Scholar 

  21. Kellock, H., Setälä, T., Friberg, A.T., Shirai, T.: Polarimetry by classical ghost diffraction. J. Opt. 16, 055702 (2014)

    Article  ADS  Google Scholar 

  22. Kellock, H., Setälä, T., Shirai, T., Friberg, A.T.: Image quality in double- and triple-intensity ghost imaging with classical partially polarized light. J. Opt. Soc. Am. A 29, 2459 (2012)

    Article  ADS  Google Scholar 

  23. Scott Tyo, J., Goldstein, D.L., Chenault, D.B., Shaw, J.A.: Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453 (2006)

    Article  ADS  Google Scholar 

  24. Chun, C.S.L., Sadjadi, F.A.: Polarimetric laser radar target classification. Opt. Lett. 30, 1806 (2005)

    Article  ADS  Google Scholar 

  25. Laurenzis, M., Lutz, Y., Christnacher, F., Matwyschuk, A., Poyet, J.: Homogeneous and speckle-free laser illumination for range-gated imaging and active polarimetry. Opt. Eng. 51, 061302 (2012)

    Article  ADS  Google Scholar 

  26. Se´bastien Breugnot and Philippe Cle´menceau.: Modeling and performances of a polarization active imager at λ=806 nm. Opt. Eng. 39, 2681 (2000)

    Article  Google Scholar 

  27. Alouini, M., Goudail, F., Grisard, A., Bourderionnet, J., Dolfi, D., Bénière, A., Baarstad, I., Løke, T., Kaspersen, P., Normandin, X., Berginc, G.: Near-infrared active polarimetric and multispectral laboratory demonstrator for target detection. Appl. Opt. 48, 1610 (2009)

    Article  ADS  Google Scholar 

  28. Bénière, A., Goudail, F., Alouini, M., Dolfi, D.: Minimization of the influence of passive-light contribution in active imaging of the degree of polarization. Opt. Lett. 33, 2335 (2008)

    Article  ADS  Google Scholar 

  29. Shi, D.F., Hu, S.X., Wang, Y.J.: Polarimetric ghost imaging. Opt. Lett. 39, 1231 (2014)

    Article  ADS  Google Scholar 

  30. Zhu, Y.C., Shi, J.H., Yang, Y., Zeng, G.H.: Polarization difference ghost imaging. Appl. Opt. 54, 1279 (2015)

    Article  ADS  Google Scholar 

  31. http://users.ece.gatech.edu/~justin/l1magic/. Accessed 8 Jan 2015

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404344, 41475001, 41205020, and 41127901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao Kai-Fa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, DF., Wang, F., Jian, H. et al. Compressed polarimetric ghost imaging of different material's reflective objects. Opt Rev 22, 882–887 (2015). https://doi.org/10.1007/s10043-015-0142-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0142-1

Keywords

Navigation