Skip to main content
Log in

A fast calculation method of optical transfer function using GPU parallel computation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

As a criterion used to describe the performance of an optical system, optical transfer function (OTF) can be calculated by autocorrelation of pupil function, dual Fourier transform, Zernike polynomial fitting, and so on. A fast OTF calculation method based on dual Fourier transform and graphics processing unit (GPU), in which the redundant computations of point spread function (PSF) and OTF are removed, is proposed in this paper. For an optical system with the pupil function of 512 × 512 pixels, the OTF computation is implemented on GPU platform. The result shows that the proposed method using the 128 × 128 pixels central regions of the PSF enhances the computational efficiency of about 4.88 times than the method using standard CUFFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Consitt, F.J.P., Mandler, W.: OTF Techniques in the routine testing of production lenses. J. Mod. Opt. 18, 123 (1971)

    Google Scholar 

  2. Kondo, H., Watanabe, T., Yamaoka, H.: Criteria for the evaluation of photographic lenses. J. Mod. Opt. 22, 353 (1975)

    Google Scholar 

  3. Lu, S., Zhang, X., Guo, R., Xia, D., Yu, J., Han, J.: Research on measuring optical transfer function. Proc. SPIE 7849, 784931 (2010)

    Article  Google Scholar 

  4. Joshi, N., Richard S., Kriegman D.: PSF estimation using sharp edge prediction. In: IEEE Conference on CVPR (2008)

  5. Codona, J.L.: Differential optical transfer function wavefront sensing. Opt. Eng. 52, 097105 (2013)

    Article  ADS  Google Scholar 

  6. Hopkins, H.H.: The frequency response of a defocused optical system. Proc. R. Soc. A 231, 91–103 (1955)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. De, M.: The influence of astigmatism on the response function of an optical system. Proc. R. Soc. A 233, 91–104 (1955)

    Article  ADS  Google Scholar 

  8. Black, G., Linfoot, E.H.: Spherical aberration and the information content of optical images. Proc. R. Soc. A 239, 522–540 (1957)

    Article  MATH  ADS  Google Scholar 

  9. Hopkins, H.H.: The aberration permissible in optical systems. Proc. Phys. Soc. B 70, 449–470 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Hopkins, H.H.: The numerical evaluation of the frequency response of optical systems. Proc. Phys. Soc. B 70, 1002–1005 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  11. Goodbody, A.M.: The influence of spherical aberration on the response function of an optical system. Proc. Phys. Soc. B 72, 411–424 (1958)

    Article  ADS  Google Scholar 

  12. Goodbody, A.M.: The influence of coma on the response function of an optical system. Proc. Phys. Soc. B 75, 677–688 (1960)

    Article  ADS  Google Scholar 

  13. Biswas, S.C., Boivin, A.: Influence of primary astigmatism on the performance of optimum apodizers. J. Opt. (Paris) 4, 1–11 (1975)

    Google Scholar 

  14. Biswas, S.C., Boivin, A.: Influence of spherical aberration on the performance of optimum apodizers. Opt. Acta 23, 569–588 (1976)

    Article  Google Scholar 

  15. Biswas, S.C., Boivin, A.: Performance of optimum apodizers in the presence of primary coma. Can. J. Phys. 57, 1388–1396 (1979)

    Article  ADS  Google Scholar 

  16. Schwiegerling, Jim: Relating wavefront error, apodization, and the optical transfer function: on-axis case. J. Opt. Soc. Am. A: 31, 2476–2483 (2014)

    Article  ADS  Google Scholar 

  17. Barnden, R.: Calculation of axial polychromatic optical transfer function. Opt. Acta 21(12), 981–1003 (1974)

    Article  ADS  Google Scholar 

  18. Zielinski T.P.: Robust image-based wavefront sensing. University of Rochester (2011)

  19. Katsaggelos, A.K., Lay, K.T.: Maximum likelihood blur identification and image restoration using the EM algorithm. IEEE Trans. Signal Process. 39(3) (1991)

  20. Math Kernel Library (MKL). Intel Corp. http://software.intel.com/en-us/articles/intel-mkl/

  21. CUDA (version 6.5). NVIDIA. http://developer.nvidia.com/cuda/cufft

  22. CUDA Toolkit 4.0 Performance Report. https://developer.nvidia.com/sites/default/files/akamai/cuda/files/CUDA_4_0_Math_Libraries_Performance_6_14.pdf

  23. Galizia, A., et al.: Compute intensive algorithm on heterogeneous system: a case study about Fourier transform.  In: 22nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, Torino (2014)

    Google Scholar 

  24. Zhang, T., Shen, J., Hong, H.: Restoration algorithms for turbulence-degraded images based on optimized estimation of discrete values of overall point spread functions. Opt. Eng. 44, 017005 (2005)

    Article  ADS  Google Scholar 

  25. Farber, R.: CUDA application design and development. Morgan Kaufmann, Burlington (2011)

    Google Scholar 

  26. Volkov, V., Brian, K.: Fitting FFT onto the G80 architecture (2008). http://www.cs.berkeley.edu/~kubitron/courses/cs258-S08/projects/reports/project6_report.pdf

  27. Govindaraju, N.K., et al: High performance discrete Fourier transforms on graphics processors. In: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pp. 1–12. IEEE Press, Piscataway (2008)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Grant No. 11178004) and Library Innovation Foundation of the Chinese Academy of Sciences (Grant No. YJ14K018). We also acknowledge the reviewers whose comments are very valuable and helpful for revising and improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhui Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Bao, H., Rao, C. et al. A fast calculation method of optical transfer function using GPU parallel computation. Opt Rev 22, 903–910 (2015). https://doi.org/10.1007/s10043-015-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0141-2

Keywords

Navigation