Skip to main content
Log in

Enhancing resolution of single-pixel imaging system

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we propose a subpixel-shifted method to overcome the limitations on the resolution of an image obtained from single-pixel imaging system. In the proposed method, modulation system is moved by sub-integer low grid units, and new information contained in each shifted low grid area can be exploited to obtain a high-resolution image. The front and back modulation single-pixel imaging systems are analyzed. Based on the shifted and point spread function parameters, this method using compressed sensing algorithm can overcome the limitative resolution generated by the modulation system pixel size and transmission effect to get high-resolution image. Finally, the machining experiment results prove the effective of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun, B., Edgar, M.P., Bowman, R., Vittert, L.E., Welsh, S., Bowman, A., Padgett, M.J.: 3D computational imaging with single-pixel detectors. Science 340, 844–847 (2013)

    Article  ADS  Google Scholar 

  2. Horiuchi, N.: Computational imaging colour imaging with single-pixel detectors. Nat. Photonics 7, 943 (2013)

    Article  ADS  Google Scholar 

  3. Welsh, S.S., Edgar, M.P., Bowman, R., Jonathan, P., Sun, B.Q., Padgett, M.J.: Fast full-color computational imaging with single-pixel detectors. Opt. Express 21, 23068–23074 (2013)

    Article  ADS  Google Scholar 

  4. Howland, G.A., Lum, D.J., Ware, M.R., Howell, J.C.: Photon counting compressive depth mapping. Opt. Express 21, 23822–23837 (2013)

    Article  ADS  Google Scholar 

  5. Zhao, C.Q., Gong, W.L., Chen, M.L., Li, E.R., Wang, H., Xu, W.D., Han, S.S.: Ghost imaging lidar via sparsity constraints. Appl. Phys. Lett. 101, 141123 (2012)

    Article  ADS  Google Scholar 

  6. M. Assmann and M. Bayer, “Compressive adaptive computational ghost imaging,” Sci. Rep-Uk 3 (2013)

  7. Yu, W., Li, M., Yao, X., Liu, X., Wu, L., Zhai, G.: Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Opt. Express 22(6), 7133–7144 (2014)

    Article  ADS  Google Scholar 

  8. Chen, J., Gong, W., Han, S.: Sub-Rayleigh ghost imaging via sparsity constraints based on a digital micro-mirror device. Phys. Lett. A 377, 1844–1847 (2013)

    Article  ADS  Google Scholar 

  9. Olivas, S.J., Rachlin, Y., Gu, L., Gardiner, B., Dawson, R., Laine, J.-P., Ford, J.E.: Characterization of a compressive imaging system using laboratory and natural light scenes. Appl. Optics 52, 4515–4526 (2013)

    Article  ADS  Google Scholar 

  10. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., Baraniuk, R.G.: Single-pixel imaging via compressive sampling. IEEE Signal Process. Mag. 25, 83–91 (2008)

    Article  ADS  Google Scholar 

  12. Chan, W.L., Charan, K., Takhar, D., Kelly, K.F., Baraniuk, R.G., Mittleman, D.M.: A single-pixel terahertz imaging system based on compressed sensing. Appl. Phys. Lett. 93, 121105 (2008)

    Article  ADS  Google Scholar 

  13. Magalhães, F., Araújo, F.M., Correia, M.V., Abolbashari, M., Farahi, F.: Active illumination single-pixel camera based on compressive sensing. Appl. Optics 50, 405–414 (2011)

    Article  ADS  Google Scholar 

  14. Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. Sig. Process. Mag. IEEE 20(3), 21–36 (2003)

    Article  ADS  Google Scholar 

  15. Farsiu, S., Robinson, M.D., Elad, M., et al.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)

    Article  ADS  Google Scholar 

  16. Wang, Z.L., Zhu, J.B., Yan, F.X., Jia, H.: Superresolution imaging by dynamic single-pixel compressive sensing system. Opt. Eng. 52, 063201 (2013)

    Article  ADS  Google Scholar 

  17. Goodman, J.W.: Introduction to fourier optics. McGraw-Hill, New York (1996)

    Google Scholar 

  18. http://www.ti.com/lsds/ti/dlp/

  19. M. Brookes. Matrix reference manual. [Online]. Available: http://www.ee.ic.ac.uk/hp/staff/dmb/matrix/intro.html

  20. Sroubek, F., Cristóbal, G., Flusser, J.: Simultaneous super-resolution and blind deconvolution. J. Phys. Conf. Ser. 124(1), 012048 (2008). (IOP Publishing)

    Article  ADS  Google Scholar 

  21. http://users.ece.gatech.edu/~justin/l1magic/

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (Grant Nos. 11404344, 41475001, 41205020, and 41127901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, D., Huang, J., Wang, F. et al. Enhancing resolution of single-pixel imaging system. Opt Rev 22, 802–808 (2015). https://doi.org/10.1007/s10043-015-0136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0136-z

Keywords

Navigation