Skip to main content
Log in

Size character optimization for measurement system with binocular vision and optical elements based on local particle swarm method

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The size character, which represents the relationship of the size variables of a binocular vision model, is studied to determine the optimal structure of the measurement system. An optimal objective function is constructed to minimize the system area. The optimal solution with the constraint of the virtual baseline distance is obtained from the particle swarm optimization (PSO) algorithm. A case study shows that when the virtual baseline is 1300 mm, the optimal parameters are: the real baseline distance is 600 mm, the bottom distance between the two smaller mirrors is 120 mm, the distance from a smaller mirror to the camera is 600 mm, the distance from a larger mirror to the camera is 700 mm, the angle between the smaller mirror and baseline is 15°, the angle between the large mirror and baseline is 30°, larger mirror is 500 mm long, then the optimal system area is 0.838 m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.O. Nuria, R. Barbara, P.P. Alex, IEEE T. Pattern Ananl. 22, 831843 (2000)

    Google Scholar 

  2. T.B. Moeslund, E. Granum, Comput. Vis. Image Und. 81, 231 (2001)

    Article  MATH  Google Scholar 

  3. D. Capel, A. Zisserman, IEEE. Signal. Proc. Mag. 20, 75 (2003)

    Article  ADS  Google Scholar 

  4. N. Paragios, R. Deriche, J. Vis. Commun. Image. R. 13, 249 (2002)

    Article  Google Scholar 

  5. Y. Sun, R. Fisher, Artif. Intell. 146, 77 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Falk, D. Mintz, J. Grunenfelder, J.I. Fann, T.A. Burdon, Surg. Endosc. 15, 1282 (2001)

    Article  Google Scholar 

  7. H.C. Longuet-Higgins, Nature 239, 133 (1981)

    Article  ADS  Google Scholar 

  8. G. Han, M.A. Sutton, Y.J. Chao, Exp. Mech. 34, 324 (1994)

    Article  Google Scholar 

  9. G.J. Zhang, Vision Measurement (Science Press, Beijing, 2008)

    Google Scholar 

  10. P.F. Luo, Y.J. Chao, M.A. Sutton, Opt. Eng. 33, 326 (1994)

    Google Scholar 

  11. R. Agrawal, P. Lan, J.V. Odom, L. Terry, D. Janine, Arch. Ophthalmol. 124, 844 (2006)

    Article  Google Scholar 

  12. G. Xu, X.T. Li, J. Su, H.D. Pan, L.X. Geng, Optik 124, 1015 (2013)

    Article  ADS  Google Scholar 

  13. G. Xu, X.T. Li, J. Su, R. Chen, J.F. Liu, Meas. Sci. Rev. 12, 68 (2012)

    Article  Google Scholar 

  14. G. Xu, X.T. Li, J. Su, G.D. Tian, L.B. Zhang, Optik 124, 1692 (2013)

    Article  ADS  Google Scholar 

  15. O. Yeniay, Math. Computat. Appl. 10, 47 (2005)

    Google Scholar 

  16. E.J. Candes, B. Recht, Found. Comput. Math. 9, 717 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. A.K. Qin, V.L. Huang, P.N. Suganthan, Evol. Comput. 13, 398 (2009)

    Article  Google Scholar 

  18. G.B. Huang, X. Ding, H. Zhou, Neurocomputing 74, 155 (2010)

    Article  Google Scholar 

  19. Z. Michalewicz, M. Schoenauer, Evol. Comput. 4, 1 (1996)

    Article  Google Scholar 

  20. O. Ekren, B.Y. Ekren, Appl. Energ. 87, 592 (2010)

    Article  Google Scholar 

  21. M.C. Bolduc, G. Laporte, J. Renaud, F.F. Boctor, Eur. J. Oper. Res. 202, 122 (2010)

    Article  MATH  Google Scholar 

  22. J. Alcala-Fdez, L. Sanchez, S. Garcia, M.J. Jesus, S. Ventura, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernandez, F. Herrera, Soft. Comput. 13, 307 (2009)

    Article  Google Scholar 

  23. A. Zhou, B.Y. Qu, Swarm. Evol. Comput. 1, 32 (2011)

    Article  Google Scholar 

  24. K. Deb, Comput. Method. Appl. M. 3, 312 (2000)

    Google Scholar 

  25. M. Clerc, J. Kennedy, Evol. Comput. 6, 58 (2002)

    Article  Google Scholar 

  26. I.C. Trelea, Inform. Process. Lett. 85, 317 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Z.H. Zhan, J. Zhang, Y. Li, H.S. Chung, IEEE. T. Syst. Man. Cy. B. 39, 1362 (2009)

    Article  Google Scholar 

  28. Z.H. Zhan, J. Zhang, Y. Li, Y.H. Shi, Evol. Comput. 15, 832 (2011)

    Article  ADS  Google Scholar 

  29. T. Niknam, B. Amiri, Appl. Soft. Comput. 10, 183 (2010)

    Article  Google Scholar 

  30. I.C. Trelea, Inform. Process. Lett. 8, 317 (2003)

    Article  MathSciNet  Google Scholar 

  31. P.Y. Yin, F. Glover, M. Laguna, J.X. Zhu, Int. J. Swarm. Intell. Res. 2, 22 (2011)

    Article  Google Scholar 

  32. G. Venter, J. Sobieszczanski-Sobieski, AIAA. J. 41, 1583 (2003)

    Article  ADS  Google Scholar 

  33. X.C. Zhang, Appl. Soft. Comput. 10, 119 (2010)

    Article  Google Scholar 

  34. M.E.H. Pedersen, A.J. Chipperfield, Appl. Soft. Comput. 10, 618 (2010)

    Article  Google Scholar 

  35. Z. Tu, Y. Lu, Evol. Comput. 12, 781 (2008)

    Article  Google Scholar 

  36. G. Xu, X.T. Li, J. Su, H.D. Pan, G.D. Tian, J. Opt. Kor. 15, 30 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the supports of National Natural Science Foundation of China under Grant No. 51205164, No. 51478204 and No. 51405075, and Jilin Province Science Foundation for Youths, under Grant No. 20130522154JH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Lu, X., Li, X. et al. Size character optimization for measurement system with binocular vision and optical elements based on local particle swarm method. Opt Rev 22, 58–64 (2015). https://doi.org/10.1007/s10043-015-0057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0057-x

Keywords

Navigation