Skip to main content
Log in

Real-time dynamic simulation of angular velocity and suppression of dead zone in IFOG

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The mechanism of the dead zone in closed-loop IFOGs is theoretically analyzed. The digital closed-loop transfer model for fiber-optic gyroscope is modified and the electronic cross-coupling interference from the feedback channel in the output signal of the detector in the forward channel is added. Using this model, we achieve a real-time dynamic simulation for the dead zone. The simulation results are basically consistent with experiment results. Before the electronic cross-coupling has been eliminated, the dead zone of the high-precision fiber-optic gyro is about \(0.04^{ \circ } /h\), while the medium precision fiber-optic gyro is \(0.4^{ \circ } /h\). After modifying the modulator circuit boards, the dead zone and the noise of the IFOG are of the same order of magnitude, better than \(0.001^{ \circ } /h\) and \(0.01^{ \circ } /h\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E.J. Post, Rev. Mod. Phys. 39, 475 (1967)

    Article  ADS  Google Scholar 

  2. R.A. Bergh, H.C. Lefevre, H.J. Shaw, Opt. Lett. 6, 502 (1981)

    Article  ADS  Google Scholar 

  3. M.S. Bielas, Proc. SPIE. 1192, 240 (1994)

    Article  Google Scholar 

  4. H. Gu, Q.D. Zhao, G.L. Yang, J. Optoelectron. Laser. 19, 1035 (2008). [in Chinese]

    Google Scholar 

  5. G.L. Yin, S.Q. Lou, Z.W. Tang, J. Optoelectron. Laser. 21, 1645 (2010). [in Chinese]

    Google Scholar 

  6. Y. Zhang, Y. Wang, T. Yang, R. Yin, J. Fang, Meas. Sci. Technol. 23, 025101 (2012)

    Article  ADS  Google Scholar 

  7. A.M. Kurbatov, R.A. Kurbatov, Gyro. Nav. 3, 132 (2012)

    Article  MathSciNet  Google Scholar 

  8. F. Zha, B. Hu, F. Qin, Optoelectron. Lett. 8, 146 (2012)

    Article  ADS  Google Scholar 

  9. S. Clerc, P. Martella, D. Durrant: presented at AIAA Guidance, Navigation, and Control Conference, (2009)

  10. C.H. Lange, C.J. Chen., Patent. 6744519 (2004)

  11. C.J. Chen, Appl. Phys. Express. 1, 072501 (2008)

    Article  ADS  Google Scholar 

  12. D.A. Egorv, R.O. Olekhnovich, A.A. Untilov, Gyro. Nav. 2, 197 (2011)

    Article  Google Scholar 

  13. H.C. Lef`evre, P. Martin, J. Morisse, P. Simonpi`etri, P. Vivenot, H.J. Arditty., Proc. SPIE. 1367, 72(1990)

  14. G.A. Pavlath, Proc. SPIE. 2837, 46 (1996)

    Article  ADS  Google Scholar 

  15. O. Celikel, S. San, Opt. Rev. 16, 35 (2009)

    Article  Google Scholar 

  16. R.M. Rajulapati, J. Nayak, N. Sk, Int. J. Eng. Sci. Tech. 4, 947 (2012)

    Google Scholar 

  17. I. Humphrey., Int. Pattent. 078391 (2005)

Download references

Acknowledgments

This research is supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61304252.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, H., Huan, Y., Wang, A. et al. Real-time dynamic simulation of angular velocity and suppression of dead zone in IFOG. Opt Rev 22, 39–45 (2015). https://doi.org/10.1007/s10043-015-0046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0046-0

Keywords

Navigation