Skip to main content
Log in

Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers

  • Special Section: Invited Review Paper
  • 1st Optical Manipulation Conference (OMC'14), Yokohama, Japan
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Laser trapping of molecular systems in solution is classified into three cases: JUST TRAPPING, EXTENDED TRAPPING, and NUCLEATION and GROWTH. The nucleation in amino acid solutions depends on where the 1064-nm CW trapping laser is focused, and crystallization and liquid–liquid phase separation are induced by laser trapping at the solution/air surface and the solution/glass interface, respectively. Laser trapping crystallization is achieved even in unsaturated solution, on which unique controls of crystallization are made possible. Crystal size is arbitrarily controlled by tuning laser power for a plate-like anhydrous crystal of l-phenylalanine. The α- or γ-crystal polymorph of glycine is selectively prepared by changing laser power and polarization. Further efficient trapping of nanoparticles and their following ejection induced by femtosecond laser pulses are introduced as unique trapping phenomena and finally future perspective is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. A. Ashkin, IEEE J. Quant. Electron. 6, 841 (2000)

    Article  Google Scholar 

  2. H. Masuhara, F.C. De Schryver, N. Kitamura, N. Tamai, Microchemistry: Spectroscopy and Chemistry in Small Domains (Elsevier, Amsterdam, 1994)

    Google Scholar 

  3. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, K. Iwai, Langmuir 13, 414 (1997)

    Article  Google Scholar 

  4. J. Hotta, K. Sasaki, H. Masuhara, J. Am. Chem. Soc. 118, 11968 (1996)

    Article  Google Scholar 

  5. S. Masuo, H. Yoshikawa, T. Asahi, H. Masuhara, T. Sato, D.-L. Jiang, T. Aida, J. Phys. Chem. B 106, 905 (2002)

    Article  Google Scholar 

  6. H. Yoshikawa, T. Matsui, H. Masuhara, Phys. Rev. E 70, 061406 (2004)

    Article  ADS  Google Scholar 

  7. C. Hosokawa, H. Yoshikawa, H. Masuhara, Phys. Rev. E 72, 021408 (2005)

    Article  ADS  Google Scholar 

  8. W. Singer, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Phys. Rev. E 75, 011916 (2007)

    Article  ADS  Google Scholar 

  9. Y. Tsuboi, T. Shoji, N. Kitamura, J. Phys. Chem. C 114, 5589 (2010)

    Article  Google Scholar 

  10. S. Masuo, H. Yoshikawa, H.-G. Nothofer, A.C. Grimsdale, U. Scherf, K. Müllen, H. Masuhara, J. Phys. Chem. B 109, 6917 (2005)

    Article  Google Scholar 

  11. A. Usman, T. Uwada, H. Masuhara, J. Phys. Chem. C 115, 11906 (2011)

    Article  Google Scholar 

  12. T. Sugiyama, T. Adachi, H. Masuhara, Chem. Lett. 36, 1480 (2007)

    Article  Google Scholar 

  13. K. Yuyama, T. Sugiyama, H. Masuhara, J. Phys. Chem. Lett. 1, 1321 (2010)

    Article  Google Scholar 

  14. T. Sugiyama, K. Yuyama, H. Masuhara, Acc. Chem. Res. 45, 1946 (2012)

    Article  Google Scholar 

  15. A. Usman, W.-Y. Chiang, H. Masuhara, J. Photochem. Photobiol. A 234, 83 (2012)

    Article  Google Scholar 

  16. K. Yuyama, T. Sugiyama, H. Masuhara, J. Phys. Chem. Lett. 4, 2436 (2013)

    Article  Google Scholar 

  17. S. Chattopadhyay, D. Erdemir, J.M.B. Evans, J. Ilavsky, H. Amenitsch, C.U. Segre, A.S. Myerson, Cryst. Growth Des. 5, 523 (2005)

    Article  Google Scholar 

  18. T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, N. Tohnai, M. Miyata, J. Phys. Chem. Lett. 1, 599 (2010)

    Article  Google Scholar 

  19. T. Rungsimanon, K. Yuyama, T. Sugiyama, H. Masuhara, Cryst. Growth Des. 10, 4686 (2010)

    Article  Google Scholar 

  20. K. Yuyama, T. Rungsimanon, T. Sugiyama, H. Masuhara, Cryst. Growth Des. 12, 2427 (2012)

    Article  Google Scholar 

  21. K. Yuyama, T. Rungsimanon, T. Sugiyama, H. Masuhara, J. Phys. Chem. C 116, 6809 (2012)

    Article  Google Scholar 

  22. L. Pan, A. Ishikawa, N. Tamai, Phys. Rev. B 75, 161305 (2007)

    Article  ADS  Google Scholar 

  23. Y. Jiang, T. Narushima, H. Okamoto, Nat. Phys. 6, 1005 (2010)

    Article  Google Scholar 

  24. W.-Y. Chiang, A. Usman, H. Masuhara, J. Phys. Chem. C 117, 19182 (2013)

    Article  Google Scholar 

  25. A. Usman, W.-Y. Chiang, H. Masuhara, Sci. Prog. 96, 1 (2013)

    Article  Google Scholar 

  26. B. Agate, C.T.A. Brown, W. Sibbett, K. Dholakia, Opt. Express 12, 3011 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The present work is partly supported by the MOE-ATU Project (National Chiao Tung University) of the Ministry of Education, Taiwan, to H.M., and the National Science Council of Taiwan to T.S. (NSC 102-2113-M-492-001-MY2) and to H.M. (MOST 103-2113-M-009-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Masuhara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuhara, H., Sugiyama, T., Yuyama, Ki. et al. Optical trapping assembling of clusters and nanoparticles in solution by CW and femtosecond lasers. Opt Rev 22, 143–148 (2015). https://doi.org/10.1007/s10043-015-0029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-015-0029-1

Keywords

Navigation