Optical Review

, Volume 22, Issue 1, pp 149–152 | Cite as

Design study of the KAGRA output mode cleaner

  • Ayaka KumetaEmail author
  • Charlotte Bond
  • Kentaro Somiya
Special Section: Invited Review Paper 1st Optical Manipulation Conference (OMC’14), Yokohama, Japan
Part of the following topical collections:
  1. 1st Optical Manipulation Conference (OMC’14), Yokohama, Japan


Most second-generation gravitational-wave detectors employ an optical resonator called an output mode cleaner (OMC), which filters out junk light from the signal and the reference light, before it reaches the detection photodiode located at the asymmetric port of the large-scale interferometer. The optical parameters of the OMC should be carefully chosen to satisfy the requirements to filter out unwanted light whilst transmitting the gravitational-wave signal. We use the simulation program FINESSE and realistic mirror phase maps that have the same surface quality as the KAGRA test masses to find out a proper design of the KAGRA OMC.


Interferometer Simulation Gravitational waves 



The authors would like to thank Daniel Brown and Andreas Freise for their kind help on the use of FINESSE, and Hiro Yamamoto for his kind support in creating realistic mirror maps. Special thanks also go to Jumpei Kato, Kazushiro Yano, Sho Atsuta, Yuu Kataoka for their kind support. This work is partially supported by the Specially Promoted Research and the Core-to-Core Program, A. Advanced Research Networks of the Japan Society for the Promotion of Science (JSPS).


  1. 1.
    A. Einstein, Ann. Phys. (Berlin), 49 (1916) [in German]Google Scholar
  2. 2.
    K. Somiya and the KAGRA collaboration, Classical Quantum Gravity, 29, 124007 (2012)Google Scholar
  3. 3.
    A. Maselli, V. Cardoso, V. Ferrari, L. Gualtieri, P. Pani, Phys. Rev. D 88, 023007 (2013)CrossRefADSGoogle Scholar
  4. 4.
    J. Mizuno, K.A. Strain, P.G. Nelson, J.M. Chen, R. Schilling, A. Ruediger, W. Winkler, K. Danzmann, Phys. Lett. A 175, 273 (1993)CrossRefADSGoogle Scholar
  5. 5.
    K. Somiya, Y. Chen, S. Kawamura, N. Mio, Phys. Rev. D 73, 122005 (2006)CrossRefADSGoogle Scholar
  6. 6.
    T. Fricke, N. Smith-Lefebvre, R. Abbott, R. Adhikari, K. Dooley, M. Evans, P. Fritschel, V. Frolov, K. Kawabe, J. Kissel, B. Slagmolen, S. Waldman, Classical Quantum Gravity 29, 065005 (2012)CrossRefADSGoogle Scholar
  7. 7.
    Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T. Sekiguchi, D. Tatsumi, H. Yamamoto, Phys. Rev. D 88, 043007 (2013)CrossRefADSGoogle Scholar
  8. 8.
    K. Arai, Presented at Sept. LVC Meeting 2013, LIGO-G1301001-1 (2013).
  9. 9.
    A. Freise, D. Brown, C. Bond. arXiv:1306.2973
  10. 10.
    A. Freise, G. Heinzel, H. Lueck, R. Schilling, B. Willke, K. Danzmann, Classical Quantum Gravity, 21, S1067 (2004).
  11. 11.
    H. Yamamoto, private communicationsGoogle Scholar
  12. 12.
    E. Hirose, D. Bajuk, G. Billingsley, T. Kajita, B. Kestner, N. Mio, M. Ohashi, B. Reichman, H. Yamamoto, L. Zhang, Phys. Rev. D 89, 062003 (2014)CrossRefADSGoogle Scholar
  13. 13.
    S. Waldman, Tech. Rep., LIGO-T1000276-4 (2011).
  14. 14.
    K. Arai, S. Barnum, P. Fritschel, J. Lewis, S. Waldman, Tech. Rep., LIGO-T1000276-5 (2013).

Copyright information

© The Optical Society of Japan 2015

Authors and Affiliations

  1. 1.Department of PhysicsTokyo Institute of TechnologyMeguroJapan
  2. 2.School of Physics and AstronomyUniversity of BirminghamEdgbastonUK

Personalised recommendations