Skip to main content
Log in

Dynamically reconfigurable characteristics of a double phase conjugate mirror using Sn2P2S6 crystals and their application to optical inter-satellite communication

  • Special Section: The Tenth Japan-Finland Joint Symposium on Optics in Engineering “OIE’13, Utsunomiya”
  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A double phase conjugate mirror (DPCM), created by two mutually incoherent beams entering photorefractive nonlinear materials, can generate a phase conjugate beam whose reflectivity may be greater than 100%. Even though the conditions of the incident beams are changed, the DPCM can be dynamically reconfigured by using a Sn2P2S6 crystal with a high response speed. These features of the DPCM are advantageous, particularly in an optical inter-satellite communication system. In particular, use of the phase conjugate beam from the DPCM offers wavefront compensation and amplification in satellite communication. In addition, the dynamically reconfigurable DPCM using a Sn2P2S6 crystal relaxes the acquisition accuracy of the signal beam in the system. In this study, the temporal and spatial operating characteristics of the DPCM using a Sn2P2S6 crystal were first clarified. Next, an inter-satellite system based on the DPCM was proposed, and it was demonstrated that our system significantly improves the tolerance of the acquisition accuracy and tracking time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Jono, Y. Takayama, K. Shiratama, I. Mase, B. Demelenne, Z. Sodnik, A. Bird, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, and K. Arai: Proc. SPIE 6457 (2007) 645702.

    Article  Google Scholar 

  2. H. Hemmati, M. Wright, B. Sanii, N. Page, G. G. Ortiz, A. Biswas, and K. Wilson: Proc. SPIE 4635 (2002) 295.

    Article  ADS  Google Scholar 

  3. N. Kadowaki, T. Takahashi, M. Akioka, Y. Fujino, and M. Toyoshima: IEICE Trans. Commun. E95-B (2012) 3378.

    Article  Google Scholar 

  4. M. Umehira, K. Kobayashi, Y. Yasui, M. Tanaka, R. Suzuki, H. Shinonaga, and N. Kawai: IEICE Trans. Commun. E92-B (2009) 3290.

    Article  ADS  Google Scholar 

  5. R. Suzuki: IEICE Trans. Commun. E87-B (2004) 2132.

    Google Scholar 

  6. T. T. Nielsen: Proc. SPIE 2381 (1995) 194.

    Article  ADS  Google Scholar 

  7. W. S. Rabinovich, G. C. Gilbreath, P. G. Goetz, R. Mahon, D. S. Katzer, K. Ikossi-Anastasiou, S. Binari, T. J. Meehan, M. Ferraro, I. Sokolsky, J. A. Vasquez, and M. J. Vilcheck: Proc. SPIE 4489 (2002) 190.

    Article  ADS  Google Scholar 

  8. P. Yeh: Introduction to Photorefractive Nonlinear Optics (Wiley, New York, 1993).

    Google Scholar 

  9. K. Shimayabu, A. Okamoto, Y. Takayama, K. Sato, and Y. Nakayama: 34th European Conf. IEEE Optical Communication (ECOC 2008), 2008, p. 1.

    Book  Google Scholar 

  10. M. Kaczmarek, P. Hribek, and R. W. Eason: Opt. Commun. 136 (1997) 277.

    Article  ADS  Google Scholar 

  11. T. Bach, M. Fretz, M. Jazbinšek, and P. Günter: Opt. Express 16 (2008) 15415.

    Article  ADS  Google Scholar 

  12. Y. Kojima, A. Okamoto, A. A. Grabar, M. Takabayashi, and K. Shimayabu: Ferroelectrics 378 (2009) 121.

    Article  Google Scholar 

  13. T. Bach, M. Jazbinšek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii: J. Opt. Soc. Am. B 24 (2007) 1535.

    Article  ADS  Google Scholar 

  14. A. Okamoto, Y. Kojima, M. Takabayashi, A. A. Grabar, and K. Sato: Proc. 7th Asia-Pacific Conf. Near-Field Optics (APNFO-7), 2009, p. 127.

    Google Scholar 

  15. C. D. Carpentier and R. Nitsche: Mater. Res. Bull. 9 (1974) 1097.

    Article  Google Scholar 

  16. G. Dittmar and H. Schäfer: Z. Naturforsch. B 29 (1974) 312 [in German].

    Google Scholar 

  17. M. I. Gurzan, A. P. Buturlakin, V. S. Gerasimenko, N. F. Korda, and V. Yu. Slivka: Sov. Phys. Solid State 19 (1977) 1794.

    Google Scholar 

  18. A. A. Grabar, Y. M. Vysochanskii, S. I. Perechinskii, L. A. Salo, M. I. Gurzan, and V. Y. Slivka: Sov. Phys. Solid State 26 (1984) 2087.

    Google Scholar 

  19. A. Grabar, R. I. Muzhikash, A. D. Kostyuk, and Yu. M. Vysochanskiy: Sov. Phys. Solid State 33 (1991) 1314.

    Google Scholar 

  20. Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter: Opt. Lett. 22 (1997) 501.

    Article  ADS  Google Scholar 

  21. X. Sun, S. Luo, H. Shi, Q. Meng, and Y. Jiang: Opt. Commun. 282 (2009) 3149.

    Article  ADS  Google Scholar 

  22. Y. Wakayama, A. Okamoto, and A. Grabar: Ferroelectrics 415 (2011) 1.

    Article  Google Scholar 

  23. J. Leitner: ESA SP 548 (2004) 621.

    ADS  Google Scholar 

  24. M. E. Campbell and T. Schetter: Proc. IEEE Aerospace Conf., 2000, Vol. 7, p. 117.

    Google Scholar 

  25. K. Sarda, S. Eagleson, E. Caillibot, C. Grant, D. Kekez, F. Pranajaya, and R. E. Zee: Acta Astronaut. 59 (2006) 236.

    Article  ADS  Google Scholar 

  26. G. Krieger, A. Moreira, H. Fiedler, I. Hajnsek, M. Werner, M. Younis, and M. Zink: IEEE Trans. Geosci. Rem. Sens. 45 (2007) 3317.

    Article  ADS  Google Scholar 

  27. F. Serène and N. Corcoral: Proc. Space Ops 2006 Conf., AIAA-2006-5919.

  28. M. Katzman: Laser Satellite Communications (Prentice Hall, Englewood Cliffs, NJ, 1987).

    Google Scholar 

  29. Web [http://rredc.nrel.gov/solar/spectra/am0/].

  30. M. Toyoshima: Space Jpn. Rev. 70 (2010) 1.

    Google Scholar 

  31. Y. Takayama, T. Jono, M. Toyoshima, H. Kunimori, D. Giggenbach, N. Perlot, M. Knapek, K. Shiratama, J. Abe, and K. Arai: Proc. SPIE 6457 (2007) 645707.

    Article  Google Scholar 

  32. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein: IEEE J. Sel. Top. Quantum Electron. 5 (1999) 83.

    Article  Google Scholar 

  33. A. A. Grabar, I. V. Kedyk, M. I. Gurzan, I. M. Stoika, A. A. Molnar, and Y. M. Vysochanskii: Opt. Commun. 188 (2001) 187.

    Article  ADS  Google Scholar 

  34. T. Tolker-Nielsen and G. Oppenhauser: Proc. SPIE 4635 (2002) 1.

    Article  ADS  Google Scholar 

  35. A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii: Opt. Mater. 30 (2008) 1555.

    Article  ADS  Google Scholar 

  36. I. V. Kedyk, P. Mathey, G. Gadret, O. Bidault, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii: J. Opt. Soc. Am. B 25 (2008) 180.

    Article  ADS  Google Scholar 

  37. T. Bach, M. Fretz, M. Jazbinšek, and P. Günter: Opt. Express 16 (2008) 15415.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimaki, K., Okamoto, A., Shibukawa, A. et al. Dynamically reconfigurable characteristics of a double phase conjugate mirror using Sn2P2S6 crystals and their application to optical inter-satellite communication. OPT REV 21, 415–424 (2014). https://doi.org/10.1007/s10043-014-0065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0065-2

Keywords

Navigation