Skip to main content
Log in

Axial super-resolution by mirror-reflected stimulated emission depletion microscopy

  • Special Section: The Tenth Japan-Finland Joint Symposium on Optics in Engineering “OIE’13, Utsunomiya”
  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In stimulated emission depletion (STED) microscopy, the lateral resolution is in the range of tens of nanometers depending on the sample and the instrument. The axial resolution, however, is in standard systems limited by diffraction to about 500 nm. We present an approach to three-dimensional diffraction-unlimited resolution by observing the sample at two optical angles. The system is realized by using an atomic force microscope (AFM) chip as a microreflector to deflect the STED beams near the region-of-interest (ROI), thus allowing observations at an angle ∠. Consequently, the superior lateral resolution can be utilized to resolve details in the axial direction of the main optical axis of the microscope. Here, fluorescent nanoparticles 90 nm apart and biological structures 80 nm apart along axial direction were distinguished by utilizing an off-the-shelf, commercial STED microscope, coupled with an AFM and an AFM chip micro-reflector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. W. Hell and J. Wichmann: Opt. Lett. 19 (1994) 780.

    Article  ADS  Google Scholar 

  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess: Science 313 (2006) 1642.

    Article  ADS  Google Scholar 

  3. M. J. Rust, M. Bates, and X. Zhuang: Nat. Methods 3 (2006) 793.

    Article  Google Scholar 

  4. M. G. L. Gustafsson: Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 13081.

    Article  ADS  Google Scholar 

  5. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell: Nat. Photonics 3 (2009) 144.

    Article  ADS  Google Scholar 

  6. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell: Science 320 (2008) 246.

    Article  ADS  Google Scholar 

  7. S. Hell and E. H. K. Stelzer: J. Opt. Soc. Am. 9 (1992) 2159.

    Article  ADS  Google Scholar 

  8. P. E. Hänninen, S. W. Hell, J. Salo, E. Soini, and C. Cremer: Appl. Phys. Lett. 66 (1995) 1698.

    Article  ADS  Google Scholar 

  9. A. H. Voie, D. H. Burns, and F. A. Spelman: J. Microsc. 170 (1993) 229.

    Article  Google Scholar 

  10. J. Huisken, J. Swoger, F. Del Bene, J. Wittbrodt, and E. H. K. Stelzer: Science 305 (2004) 1007.

    Article  ADS  Google Scholar 

  11. J. C. M. Gebhardt, D. M. Suter, R. Roy, Z. W. Zhao, A. R. Chapman, S. Basu, T. Maniatis, and X. S. Xie: Nat. Methods 10 (2013) 421.

    Article  Google Scholar 

  12. E. H. K. Stelzer and S. Lindek: Opt. Commun. 111 (1994) 536.

    Article  ADS  Google Scholar 

  13. S. Lindek, T. Stefany, and E. H. K. Stelzer: J. Microsc. 188 (1997) 280.

    Article  Google Scholar 

  14. P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat: Biophys. J. 55 (1989) 101.

    Article  Google Scholar 

  15. R. Heintzmann and C. Cremer: J. Microsc. 206 (2002) 7.

    Article  MathSciNet  Google Scholar 

  16. Y. Yu, A. Trouvé, B. Chalmond, O. Renaud, and S. L. Shorte: J. Microsc. 242 (2011) 70.

    Article  Google Scholar 

  17. R. J. Skaer and S. Whytock: J. Cell Sci. 19 (1975) 1.

    Google Scholar 

  18. R. Schmidt, C. A. Wurm, S. Jakobs, J. Engelhardt, A. Egner, and S. W. Hell: Nat. Methods 5 (2008) 539.

    Article  Google Scholar 

  19. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell: Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 8206.

    Article  ADS  Google Scholar 

  20. D. Wildanger, R. Medda, L. Kastrup, and S. W. Hell: J. Microsc. 236 (2009) 35.

    Article  MathSciNet  Google Scholar 

  21. K. I. Willig, B. Harke, R. Medda, and S. W. Hell: Nat. Methods 4 (2007) 915.

    Article  Google Scholar 

  22. T. Staudt, M. C. Lang, R. Medda, J. Engelhardt, and S. W. Hell: Microsc. Res. Tech. 70 (2007) 1.

    Article  Google Scholar 

  23. E. H. W. Meijering, W. J. Niessen, and M. A. Viergever: Med. Image Anal. 5 (2001) 111.

    Article  Google Scholar 

  24. B. Schmid, J. Schindelin, A. Cardona, M. Longair, and M. Heisenberg: BMC Bioinformatics 11 (2010) 274.

    Article  Google Scholar 

  25. C. Vonesch and M. Unser: IEEE Trans. Image Process. 17 (2008) 539.

    Article  ADS  MathSciNet  Google Scholar 

  26. K. I. Willig, J. Keller, M. Bossi, and S. W. Hell: New J. Phys. 8 (2006) 106.

    Article  ADS  Google Scholar 

  27. T. Corle and G. Kino: Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic Press, San Diego, CA, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Deguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deguchi, T., Koho, S., Näreoja, T. et al. Axial super-resolution by mirror-reflected stimulated emission depletion microscopy. OPT REV 21, 389–394 (2014). https://doi.org/10.1007/s10043-014-0060-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0060-7

Keywords

Navigation