Skip to main content
Log in

Spatially regularized and locality-constrained linear coding for human action recognition

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

To reduce quantization error, preserve the manifold of local features, distinguish the ambiguous features, and model the spatial configuration of features for Bag-of-Features (BoF) model-based human action recognition, a novel feature coding method called spatially regularized and locality-constrained linear coding (SLLC) is proposed. The spatial regularization and locality constraint are involved in the feature coding phase to model the spatial configuration of features and preserve their nonlinear manifold. The action recognition experimental results on benchmark datasets show that SLLC achieves better performance than the state-of-the-art feature coding methods such as soft vector quantization, sparse coding, and locality-constrained linear coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chakraborty, M. B. Holte, T. B. Moeslund, and J. Gonzàlez: Comput. Vis. Image Understanding 116 (2012) 396.

    Article  Google Scholar 

  2. X. Yan and Y. Luo: Neurocomputing 87 (2012) 51.

    Article  Google Scholar 

  3. H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid: In British Machine Vision Conference, 2009.

    Google Scholar 

  4. I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld: In Computer Vision and Pattern Recognition, 2008, p. 1.

    Google Scholar 

  5. J. C. Niebles, H. Wang, and L. Fei-Fei: Int. J. Comput. Vis. 79 (2008) 299.

    Article  Google Scholar 

  6. H. Wang, A. Klaser, C. Schmid, and C.-L. Liu: In Computer Vision and Pattern Recognition, 2011, p. 3169.

    Google Scholar 

  7. Y. Zhu, X. Zhao, Y. Fu, and Y. Liu: Lect. Notes Comput. Sci. 6493 (2011) 660.

    Article  Google Scholar 

  8. Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng: In Computer Vision and Pattern Recognition, 2011, p. 3361.

    Google Scholar 

  9. J. Wang, Z. Chen, and Y. Wu: In Computer Vision and Pattern Recognition, 2011, p. 3185.

    Google Scholar 

  10. Z. Zhang, C. Wang, B. Xiao, W. Zhou, and S. Liu: IEEE Signal Process. Lett. 19 (2012) 439.

    Article  ADS  Google Scholar 

  11. A. Kovashka and K. Grauman: In Computer Vision and Pattern Recognition, 2010, p. 2046.

    Google Scholar 

  12. X. Yan and Y. Luo: Opt. Eng. 50 (2011) 017203.

    Article  ADS  Google Scholar 

  13. Y. Zhong and M. Stevens: In Computer Vision and Pattern Recognition, 2010, p. 25.

    Google Scholar 

  14. Z. Zhang, Y. Hu, and S. Chan: In European Conference on Computer Vision, 2008, p. 817.

    Google Scholar 

  15. K. Jia and D.-Y. Yeung: In Computer Vision and Pattern Recognition, 2008, p. 1.

    Google Scholar 

  16. A. A. Chaaraoui, P. Climent-Pérez, and F. Flórez-Revuelta: Pattern Recognit. Lett. 34 (2013) 1799.

    Article  Google Scholar 

  17. J. Wang and Z. Xu: Signal Process. 93 (2013) 2151.

    Article  Google Scholar 

  18. C.-C. Tseng, J.-C. Chen, C.-H. Fang, and J.-J. J. Lien: Pattern Recognition 45 (2012) 3611.

    Article  Google Scholar 

  19. L. Wang, Y. Wang, T. Jiang, D. Zhao, and W. Gao: Pattern Recognition 46 (2013) 1832.

    Article  Google Scholar 

  20. A. M. Hamad and N. Tsumura: Opt. Rev. 19 (2012) 110.

    Article  Google Scholar 

  21. A. M. Hamad and N. Tsumura: Opt. Rev. 19 (2012) 182.

    Article  Google Scholar 

  22. K. Yu, T. Zhang, and Y. Gong: Adv. Neural Inf. Process. Syst. 22 (2009) 2223.

    Google Scholar 

  23. J. Yang, K. Yu, Y. Gong, and T. Huang: In Computer Vision and Pattern Recognition, 2009, p. 1794.

    Google Scholar 

  24. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong: In Computer Vision and Pattern Recognition, 2010, p. 3360.

    Google Scholar 

  25. J. Sun, X. Wu, S. Yan, L.-F. Cheong, T.-S. Chua, and J. Li: In Computer Vision and Pattern Recognition, 2009, p. 2004.

    Google Scholar 

  26. D. Han, L. Bo, and C. Sminchisescu: In International Conference Computer Vision, 2009, p. 1933.

    Google Scholar 

  27. S. T. Roweis and L. K. Saul: Science 290 (2000) 2323.

    Article  ADS  Google Scholar 

  28. R. Poppe: Image Vision Comput. 28 (2010) 976.

    Article  Google Scholar 

  29. J. K. Aggarwal and M. S. Ryoo: ACM Comput. Surv. 43 (2011) 16.

    Article  Google Scholar 

  30. I. Laptev: Int. J. Comput. Vis. 64 (2005) 107.

    Article  Google Scholar 

  31. G. Willems, T. Tuytelaars, and L. V. Gool: In European Conference on Computer Vision, 2008, p. 650.

    Google Scholar 

  32. P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie: Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005, p. 65.

    Book  Google Scholar 

  33. A. Oikonomopoulos, I. Patras, and M. Pantic: IEEE Trans. Syst. Man. Cybern., Part B 36 (2005) 710.

    Article  Google Scholar 

  34. K. Rapantzikos, Y. Avrithis, and S. Kollias: In Computer Vision and Pattern Recognition, 2009, p. 1454.

    Google Scholar 

  35. A. Kläser, M. MarszaŁek, and C. Schmid: In British Machine Vision Conference, 2008.

    Google Scholar 

  36. M.-J. Escobar and P. Kornprobst: Comput. Vis. Image Understanding 116 (2012) 593.

    Article  Google Scholar 

  37. J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J.-M. Geusebroek: IEEE Trans. Pattern Anal. 32 (2010) 1271.

    Article  Google Scholar 

  38. W. E. Vinje and J. L. Gallant: Science 287 (2000) 1273.

    Article  ADS  Google Scholar 

  39. B. A. Olshausen and D. J. Field: Vision Res. 37 (1997) 3311.

    Article  Google Scholar 

  40. D. Cai, X. He, and J. Han: In International Conference Computer Vision, 2007, p. 1.

    Google Scholar 

  41. C.-P. Wei, Y.-W. Chao, Y.-R. Yeh, and Y.-C. F. Wang: Pattern Recognition 46 (2013) 1277.

    Article  MATH  Google Scholar 

  42. Q. Gu and J. Zhou: In Proceedings of International Conference on Knowledge Discovery and Data Mining, 2009, p. 359.

    Google Scholar 

  43. F. Wu, W. Wang, Y. Yang, Y. Zhuang, and F. Nie: Neurocomputing 73 (2010) 1641.

    Article  Google Scholar 

  44. D. Zhou, O. Bousquet, and T. Lal: Adv. Neural Inf. Process. Syst. 16 (2003) 321.

    Google Scholar 

  45. M. Aharon, M. Elad, and A. Bruckstein: IEEE Trans. Signal Process. 54 (2006) 4311.

    Article  ADS  Google Scholar 

  46. M. Marszalek, I. Laptev, and C. Schmid: In Computer Vision and Pattern Recognition, 2009, p. 2929.

    Google Scholar 

  47. H. Lee, A. Battle, R. Raina, and A. Y. Ng: Adv. Neural Inf. Process. Syst. 19 (2007) 801.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Gai, W., Guo, S. et al. Spatially regularized and locality-constrained linear coding for human action recognition. OPT REV 21, 226–236 (2014). https://doi.org/10.1007/s10043-014-0033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0033-x

Keywords

Navigation