Skip to main content
Log in

Improved gamut-constrained illuminant estimation by combining modified category correlation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper we propose a new gamut-constrained illuminant estimation framework using an improved category correlation method. Firstly, we obtain a set of feasible illuminations by the original gamut mapping method. Then, the probability of each feasible illumination as the ground truth illuminant is calculated according to its ability to map the corrected image onto specific colors using the improved category correlation method. Differently from the original category correlation method, to decrease the effect of image noise and the computation complexity, instead of using an entire pixel set for estimating the probability of portable illuminant, superpixel segments of an input image are used in our improved method. And the best illuminant estimate is given on the basis of the measure of the degree to which each feasible illumination is consistent with the image data. Experiment results prove that our improved method shows better current state-of-the-art performance Gamut mapping methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Castelhano and J. M. Henderson: J. Vision 5 (2008) 660.

    Google Scholar 

  2. A. Oliva and P. G. Schyns: Cognitive Psychol. 41 (2000) 176.

    Article  Google Scholar 

  3. V. Goffaux, C. Jacques, and A. Mouraux: Visual Cognition 41 (2004) 878.

    Google Scholar 

  4. A. Gijsenij, T. Gevers, and J. van de Weijer: IEEE Trans. Image Process. 20 (2011) 2475.

    Article  MathSciNet  ADS  Google Scholar 

  5. G. Buchsbaum: J. Franklin Inst. 310 (1980) 1.

    Article  Google Scholar 

  6. E. H. Land and J. J. McCann: J. Opt. Soc. Am. A 61 (1971) 1.

    Article  ADS  Google Scholar 

  7. J. van de Weijer, T. Gevers, and A. Gijsenij: IEEE Trans. Image Process. 16 (2007) 2207.

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Chakrabarti, K. Hirakawa, and T. Zickler: Int. Conf. Computer Vision and Pattern Recognition, 2008, p. 1.

    Google Scholar 

  9. H.-C. Lee: J. Opt. Soc. Am. A 3 (1986) 1694.

    Article  ADS  Google Scholar 

  10. S. Tominaga and B. A. Wandell: J. Opt. Soc. Am. A 6 (1989) 576.

    Article  ADS  Google Scholar 

  11. G. Healey: J. Image Vision Comput. 9 (1991) 333.

    Article  ADS  Google Scholar 

  12. R. T. Tan, K. Nishino, and K. Ikeuchi: J. Opt. Soc. Am. A 21 (2004) 321.

    Article  ADS  Google Scholar 

  13. V. C. Cardei, B. Funt, and K. Barnard: J. Opt. Soc. Am. A 19 (2002) 2374.

    Article  ADS  Google Scholar 

  14. W. Xiong and B. Funt: J. Imaging Sci. Technol. 50 (2006) 341.

    Article  Google Scholar 

  15. N. Wang, D. Xue, and B. Li: IEEE Trans. Inf. Syst. 92 (2009) 2279.

    Article  Google Scholar 

  16. V. Agarwal, A. V. Gribok, A. Koschan, and M. A. Abidi: Int. Conf. Image Processing, 2006, p. 981.

    Google Scholar 

  17. V. Agarwal, A. V. Gribok, and M. A. Abidi: J. Neural Networks 20 (2007) 559.

    Article  MATH  Google Scholar 

  18. D. A. Forsyth: J. Comput. Vision 21 (1990) 1997.

    Google Scholar 

  19. G. D. Finlayson, S. D. Hordley, and I. Tastl: J. Comput. Vision 67 (2006) 93.

    Article  Google Scholar 

  20. J. Vazquez-Corral, M. Vanrell, R. Baldrich, and F. Tous: IEEE Trans. Image Process. 21 (2012) 1997.

    Article  MathSciNet  ADS  Google Scholar 

  21. G. Finlayson and S. Hordley: IEEE Trans. Image Process. 9 (2000) 1774.

    Article  ADS  Google Scholar 

  22. G. D. Finlayson, S. D. Hordley, and R. Xu: Int. Conf. Image Processing, 2005, p. 948.

    Google Scholar 

  23. K. Barnard, L. Martin, A. Coath, and B. Funt: IEEE Trans. Image Process. 11 (2002) 985.

    Article  ADS  Google Scholar 

  24. K. Barnard: European Conf. Computer Vision, 2000, p. 390.

    Google Scholar 

  25. A. Gijsenij and T. Gevers: Int. Conf. Image Processing, 2007, p. 501.

    Google Scholar 

  26. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi: IEEE Trans. Pattern Anal. Mach. Intell. 31 (2009) 2290.

    Article  Google Scholar 

  27. B. Berlin and P. Kay: Basic Color Terms: Their Universality and Evolution (University of California Press, Berkeley, CA, 1969) p. 108.

    Google Scholar 

  28. R. Benavente, M. Vanrell, and R. Baldrich: Color Res. Appl. 31 (2006) 48.

    Article  Google Scholar 

  29. G. Sapiro: IEEE Trans. Pattern Anal. Mach. Intell. 21 (1999) 1210.

    Article  Google Scholar 

  30. J. van de Weijer, C. Schmid, and J. Verbeek: Int. Conf. Computer Vision, 2007, p. 1.

    Google Scholar 

  31. F. Ciurea and B. Funt: Proc. Is&T/SID 7th Color Imaging Conf., 2003, p. 160.

    Google Scholar 

  32. L. Shi and B. Funt: Re-Processed Version of the Gehler Color Constancy Dataset of 568 Images (2000) [http://www.cs.sfu.ca/~color/data/].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingsheng Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, X., Xiang, F. & Wang, Z. Improved gamut-constrained illuminant estimation by combining modified category correlation. OPT REV 20, 348–354 (2013). https://doi.org/10.1007/s10043-013-0063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-013-0063-9

Keywords

Navigation