Optical Review

, Volume 20, Issue 4, pp 321–326 | Cite as

Superfunctions for amplifiers

Regular Paper

Abstract

An amplifier is characterized by its transfer function T, which expresses the dependence of the output signal on the input signal. This signal may be related to power, intensity, energy of a pulse, or its fluence, or any similar physical quantity. The internal structure of the amplified signal (e.g., its spectral content, polarization, temporal behavior, and spatial distribution) is not taken into account. The amplifier is considered to be spatially homogeneous and uniformly pumped. The transfer function is supposed to be known (measured in an experiment). The problem of reconstruction of the behavior of the signal inside the amplifier is formulated. For a given transfer function T, the evolution of the signal inside is interpreted as the superfunction F, satisfying the transfer equation F(z + 1) T(F(z)), where z is of coordinate along the propagation direction, while the length of the amplifier is used as a unit of measurement. (For simplicity, distances are measured in units of the length of the amplifier.) Two examples of realistic transfer function T are considered; they correspond to amplification of continuous wave and to amplification of pulses. In these examples, the transfer function and the distribution of the signal along the amplifier can be expressed in terms of special functions. The iterative procedure is suggested as a general method of reconstructing the signal along the amplifier, if neither the transfer function T, nor the superfunction F can be expressed with a simple combination of special functions. The examples show that the iterations converge to a physically meaningful solution. This method is expected to be useful for the characterization of laser materials from the measurement of the transfer function of a bulk sample.

Keywords

theoretical tool laser materials transfer function superfunction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    K. Ueda and A. Liu: Laser Phys. 8 (1998) 774.Google Scholar
  2. 2).
    K. Ueda, H. Sekiguchi, Y. Matsuoka, H. Miyajima, and H. Kan: CLEO Pacific Rim 1999, p. 217.Google Scholar
  3. 3).
    Hamamatsu Photonics K.K. Laser group: Nat. Photonics sample (2006) 14.Google Scholar
  4. 4).
    P. Kano, D. Kouznetsov, J. V. Moloney, and M. Brio: IEEE J. Quantum Electron. 40 (2004) 1301.ADSCrossRefGoogle Scholar
  5. 5).
    D. Kouznetsov and J. V. Moloney: IEEE J. Quantum Electron. 40 (2004) 378.ADSCrossRefGoogle Scholar
  6. 6).
    D. Kouznetsov and H. Trappmann: Moscow Univ. Phys. Bull. 65 (2010) 6.ADSMATHCrossRefGoogle Scholar
  7. 7).
    D. Yu. Kouznetsov: Moscow Univ. Phys. Bull. 65 (2010) 91.ADSMATHCrossRefGoogle Scholar
  8. 8).
    D. Kouznetsov and H. Trappmann: Math. Comput. 79 (2010) 1727.MathSciNetMATHCrossRefGoogle Scholar
  9. 9).
    H. Trappmann and D. Kouznetsov: Math. Comput. 81 (2012) 2207.MathSciNetMATHCrossRefGoogle Scholar
  10. 10).
    D. Kouznetsov: Math. Comput. 78 (2009) 1647.MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11).
  12. 12).
  13. 13).
  14. 14).
  15. 15).
  16. 16).
  17. 17).
  18. 18).
  19. 19).
  20. 20).
    H. Kneser: J. Reine Angew. Math. 187 (1950) 56.MathSciNetGoogle Scholar
  21. 21).
    H. Yoneda: Recovery of intensity inside the amplifier from its transfer function is impossible. Private communication (2010).Google Scholar
  22. 22).
    A. Shirakawa: It is not possible to reconstruct the intensity inside the amplifier just from its transfer function. Private communication (2011).Google Scholar
  23. 23).
    A. Kaminsky: There is no sense in analyzing the transfer function of an amplifier without assuming the specific model for the gain medium. Private communication (2011).Google Scholar
  24. 24).
    M. Haiml, R. Grange, and U. Keller: Appl. Phys. B 79 (2004) 331.CrossRefGoogle Scholar
  25. 25).
    W. Li, H. Pan, L. Ding, H. Zeng, W. Lu, G. Zhao, C. Yan, L. Su, and J. Xu: Appl. Phys. Lett. 88 (2006) 221117.ADSCrossRefGoogle Scholar
  26. 26).
    D. Kouznetsov: Appl. Phys. Lett. 90 (2007) 066101.ADSCrossRefGoogle Scholar
  27. 27).
    G. Zhao, L. Su, J. Xu, and H. Zeng: Appl. Phys. Lett. 90 (2007) 066103.ADSCrossRefGoogle Scholar
  28. 28).
    D. Kouznetsov: Chin. Opt. Lett. 5 (2007) S240.Google Scholar
  29. 29).
  30. 30).
  31. 31).
  32. 32).
    D. Kouznetsov: Place of science and physics in human knowledge. Uspekhi, Tribune, 2010–2011, No. 110 [in Russian].Google Scholar
  33. 33).
    D. Kouznetsov: Far East J. Mech. Eng. Phys. 1 (2010) 1.Google Scholar
  34. 34).
    J.-F. Bisson, D. Kouznetsov, K. Ueda, S. T. Fredrich-Thornton, K. Petermann, and G. Huber: Appl. Phys. Lett. 90 (2007) 201901.ADSCrossRefGoogle Scholar
  35. 35).
    A. E. Siegman: Lasers (University Science Books, New York, 1986).Google Scholar
  36. 36).
    D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda: J. Opt. Soc. Am. B 22 (2005) 1605.ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2013

Authors and Affiliations

  1. 1.Institute of Laser ScienceUniversity of Electro-CommunicationsChofu, TokyoJapan

Personalised recommendations