Skip to main content
Log in

Characteristics of double-plasmonic-racetrack resonator to increase quality factor

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We have numerically evaluated wavelength characteristics at telecommunication wavelengths by means of a doubleplasmonic-racetrack resonator using the finite-difference time domain method. We investigated the effect of the space between the two plasmonic racetracks of the resonator on the quality factor. The quality factor of the proposed structure is 57 when the space between two racetracks is 600 nm. The quality factor of a double-plasmonic-racetrack resonator of a dielectric-filled trench is 1.5 times greater than that of a single-plasmonic-racetrack resonator of an air-filled trench. The phase mismatch of the trench channel plasmon polaritons contributes to the quality factor of the double-plasmonicracetrack resonator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Bozhevolnyi: Opt. Express 14 (2006) 9467.

    Article  ADS  Google Scholar 

  2. K. Tanaka and M. Tanaka: Appl. Phys. Lett. 82 (2003) 1158.

    Article  ADS  Google Scholar 

  3. T. Holmgaard and S. I. Bozhevolnyi: Phys. Rev. B 75 (2007) 245405.

    Article  ADS  Google Scholar 

  4. A. V. Krasavin and A. V. Zayats: Opt. Commun. 283 (2010) 1581.

    Article  ADS  Google Scholar 

  5. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui: Appl. Phys. Lett. 87 (2005) 261114.

    Article  ADS  Google Scholar 

  6. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi: Opt. Express 14 (2006) 314.

    Article  ADS  Google Scholar 

  7. T. Holmgaard and S. I. Bozhevolnyi: Appl. Phys. Lett. 92 (2008) 011124.

    Article  ADS  Google Scholar 

  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, and A. Drezet: Appl. Phys. Lett. 88 (2006) 094104.

    Article  ADS  Google Scholar 

  9. K. Tanaka and M. Tanaka: Jpn. J. Appl. Phys. 42 (2003) L585.

    Article  ADS  Google Scholar 

  10. T. Srivastava and A. Kumar: J. Appl. Phys. 106 (2009) 043104.

    Article  ADS  Google Scholar 

  11. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, and A. Dereux: Nano Lett. 9 (2009) 2935.

    Article  ADS  Google Scholar 

  12. L. Liu, Z. Han, and S. He: Opt. Express 13 (2005) 6645.

    Article  ADS  Google Scholar 

  13. S. I. Bozhevolnyi and J. Jung: Opt. Express 16 (2008) 2676.

    Article  ADS  Google Scholar 

  14. S. H. Chang and T. C. Chiu: Opt. Express 15 (2007) 1755.

    Article  ADS  Google Scholar 

  15. D. Dai and S. He: Opt. Express 17 (2009) 16646.

    Article  ADS  Google Scholar 

  16. I.-M. Lee, J. Jung, J. Park, H. Kim, and B. Lee: Opt. Express 15 (2007) 16596.

    Article  ADS  Google Scholar 

  17. S. Randhawa, A. V. Krasavin, T. Holmgaard, J. Renger, S. I. Bozhevolnyi, A. V. Zayats, and R. Quidant: Appl. Phys. Lett. 98 (2011) 161102.

    Article  Google Scholar 

  18. S. Randhawa, S. Lachèze, J. Renger, A. Bouhelier, R. E. de Lamaestre, A. Dereux, and R. Quidant: Opt. Express 20 (2012) 2354.

    Article  ADS  Google Scholar 

  19. A. Krishnan, C. J. Regan, L. G. des Peralta, and A. A. Bernussi: Appl. Phys. Lett. 97 (2010) 231110.

    Article  ADS  Google Scholar 

  20. X. Wang, P. Wang, C. Chen, J. Chen, Y. Lu, H. Ming, and Q. Zhan: J. Appl. Phys. 107 (2010) 124517.

    Article  ADS  Google Scholar 

  21. Z. Han: Photonics Nanostruct. Fundam. Appl. 8 (2010) 172.

    Article  ADS  Google Scholar 

  22. H. Okamoto, K. Yamaguchi, M. Haraguchi, T. Okamoto, and C. Sun: Jpn. J. Appl. Phys. 50 (2011) 092201.

    Article  ADS  Google Scholar 

  23. H. Okamoto, K. Yamaguchi, M. Haraguchi, and T. Okamoto: J. Nonlinear Opt. Phys. Mater. 19 (2010) 583.

    Article  ADS  Google Scholar 

  24. H. Okamoto, K. Yamaguchi, M. Haraguchi, and T. Okamoto: Appl. Phys. B 108 (2012) 149.

    Article  ADS  Google Scholar 

  25. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, and A. Dereux: Opt. Express 17 (2009) 2968.

    Article  ADS  Google Scholar 

  26. T.-B. Wang, X.-W. Wen, C.-P. Yin, and H.-Z. Wang: Opt. Express 17 (2009) 24096.

    Article  ADS  Google Scholar 

  27. V. S. Volkov, S. I. Bezhevolnyi, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen: Nano Lett. 7 (2007) 880.

    Article  ADS  Google Scholar 

  28. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala: Nature 457 (2009) 455.

    Article  ADS  Google Scholar 

  29. G. Veronis and S. Fan: Appl. Phys. Lett. 87 (2005) 131102.

    Article  ADS  Google Scholar 

  30. Z. Han and S. I. Bozhevolnyi: Opt. Express 19 (2011) 3251.

    Article  ADS  Google Scholar 

  31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson: Comput. Phys. Commun. 181 (2010) 687.

    Article  ADS  MATH  Google Scholar 

  32. A. Vörckel, M. Mönster, W. Henschel, P. H. Bolivar, and H. Kurz: IEEE Photonics Technol. Lett. 15 (2003) 921.

    Article  ADS  Google Scholar 

  33. Q. Xu, D. Fattal, and R. G. Beausoleil: Opt. Express 16 (2008) 4309.

    Article  ADS  Google Scholar 

  34. Z. Liu, S. Durant, H. Lee, Y. Xiong, Y. Pikus, C. Sun, and X. Zhang: Opt. Lett. 32 (2007) 629.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Okamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, H., Onishi, S., Kataoka, M. et al. Characteristics of double-plasmonic-racetrack resonator to increase quality factor. OPT REV 20, 26–30 (2013). https://doi.org/10.1007/s10043-013-0005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-013-0005-6

Keywords

Navigation