Optical Review

, Volume 19, Issue 1, pp 1–6 | Cite as

Performance improvement of spectral amplitude coding-optical code division multiple access systems using NAND detection with enhanced double weight code

  • Nasim Ahmed
  • Syed Alwee Aljunid
  • R. Badlishah Ahmad
  • Hilal A. Fadhil
  • Mohd Abdur Rashid
Regular Papers

Abstract

The bit-error rate (BER) performance of the spectral amplitude coding-optical code division multiple access (SACOCDMA) system has been investigated by using NAND subtraction detection technique with enhanced double weight (EDW) code. The EDW code is the enhanced version of double weight (DW) code family where the code weight is any odd number and greater than one with ideal cross-correlation. In order to evaluate the performance of the system, we used mathematical analysis extensively along with the simulation experiment. The evaluation results obtained using the NAND subtraction detection technique was compared with those obtained using the complementary detection technique for the same number of active users. The comparison results revealed that the BER performance of the system using NAND subtraction detection technique has greatly been improved as compared to the complementary technique.

Keywords

SAC-OCDMA enhanced double weight (EDW) double weight (DW) complementary subtraction detection fiber-Bragg-grating (FBG) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    R. C. Menendez, P. Toliver, and S. Galli et al.: J. Lightwave Technol. 23 (2005) 3219.ADSCrossRefGoogle Scholar
  2. 2).
    S. Mashhadi and J. A. Salehi: IEEE Trans. Commun. 54 (2006) 1457.CrossRefGoogle Scholar
  3. 3).
    H. Lundqvist and G. Karlsson: J. Lightwave Technol. 23 (2005) 2342.ADSCrossRefGoogle Scholar
  4. 4).
    E. D. J. Smith, R. J. Blailkie, and D. P. Taylor: IEEE Trans. Commun. 46 (1998) 1176.CrossRefGoogle Scholar
  5. 5).
    M. Kavehrad and D. Zaccarin: IEEE J. Lightwave Technol. 13 (1995) 534.ADSCrossRefGoogle Scholar
  6. 6).
    H. A. Fadil, S. A. Aljunid, and R. B. Ahmad: Opt. Fiber Technol. 15 (2009) 283.ADSCrossRefGoogle Scholar
  7. 7).
    M. S. Anuar, S. A. Aljunid, and N. M. Saad et al.: Opt. Commun. 7 (2009) 2659.ADSCrossRefGoogle Scholar
  8. 8).
    Z. Wei and H. Ghafouri-Shiraz: IEEE J. Lightwave Technol. 50 (2002) 1209.Google Scholar
  9. 9).
    T. Demeechai: IEEE Trans. Commun. 54 (2006) 29.CrossRefGoogle Scholar
  10. 10).
    E. D. J. Smith, R. J. Blaikie, and D. P. Taylor: IEEE Trans. Commun. 46 (1998) 1176.CrossRefGoogle Scholar
  11. 11).
    Y. Hassan, I. F. Ahmed, and M. S. Naufal: Int. J. Comput. Appl. 202 (2010) 2881.Google Scholar
  12. 12).
    K. A. Mohamad, N. Feras, and S. A. Aljunid: Opt. Commun. 281 (2008) 4658.CrossRefGoogle Scholar
  13. 13).
    T. H. Abd, S. A. AlJunid, and H. A. Fadil et al.: Opt. Fiber Technol. 17 (2011) 273.ADSCrossRefGoogle Scholar
  14. 14).
    H. Brain and R. Clive: Digital Logic Design (Elsevier, 2002) 4th ed.Google Scholar
  15. 15).
    W. Huang et al.: J. Lightwave Technol. 18 (2000) 765.ADSCrossRefGoogle Scholar
  16. 16).
    L. Nguyen, B. Aazhang, and J. F. Young: IEEE Electron Device Lett. 31 (1995) 469.Google Scholar

Copyright information

© The Optical Society of Japan 2012

Authors and Affiliations

  • Nasim Ahmed
    • 2
  • Syed Alwee Aljunid
    • 2
  • R. Badlishah Ahmad
    • 2
  • Hilal A. Fadhil
    • 2
  • Mohd Abdur Rashid
    • 1
  1. 1.School of Electrical Systems EngineeringUniversity Malaysia PerlisArau PerlisMalaysia
  2. 2.School of Computer and Communication EngineeringUniversity Malaysia PerlisArau PerlisMalaysia

Personalised recommendations