Skip to main content
Log in

Numerical analysis of thermal effects in InGaAs system vertical-external-cavity surface-emitting laser

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

The temperature, the heat flux, and the temperature gradient in an InGaAs system vertical-external-cavity surface-emitting laser are numerical studied by the use of the finite element method, and the analysis is focused on the maximum temperature rise in the active region under various conditions. The effect of substrate thickness on the peak gain of quantum wells, the influence of pump spot radius on the maximum output power, and the spontaneous emission wavelength under different pump power are examined respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Giesen: Proc. SPIE 5620 (2004) 112.

    Article  ADS  Google Scholar 

  2. A. Giesen and J. Speiser: IEEE J. Sel. Top. Quantum Electron. 13 (2007) 598.

    Article  Google Scholar 

  3. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian: IEEE Photonics Technol. Lett. 9 (1997) 1063.

    Article  ADS  Google Scholar 

  4. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath: Appl. Phys. Lett. 82 (2003) 3620.

    Article  ADS  Google Scholar 

  5. F. Li, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch: Appl. Phys. Lett. 88 (2006) 021105.

    Article  ADS  Google Scholar 

  6. A. C. Tropper and S. Hoogland: Prog. Quantum Electron. 30 (2006) 1.

    Article  ADS  Google Scholar 

  7. T. D. Raymond, W. J. Alford, M. H. Crawford, and A. A. Allerman: Opt. Lett. 24 (1999) 1127.

    Article  ADS  Google Scholar 

  8. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller: IEEE Photonics Technol. Lett. 12 (2000) 1135.

    Article  ADS  Google Scholar 

  9. R. H. Abram, K. S. Gardner, E. Riis, and A. I. Ferguson: Opt. Express 12 (2004) 5434.

    Article  ADS  Google Scholar 

  10. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A. R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller: Opt. Lett. 33 (2008) 2719.

    Article  ADS  Google Scholar 

  11. L. E. Hunziker, Q. Z. Shu, D. Bauer, C. Ihli, G. J. Mahnke, M. Rebut, J. R. Chilla, A. L. Caprara, H. Zhou, E. S. Weiss, and M. K. Reed: Proc. SPIE 6451 (2007) 64510A.

    Article  Google Scholar 

  12. J. Chilla, Q. Z. Shu, H. Zhou, E. Weiss, M. Reed, and L. Spinelli: Proc. SPIE 6451 (2007) 645109.

    Article  Google Scholar 

  13. P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang: J. Appl. Phys. 105 (2009) 053103.

    Article  ADS  Google Scholar 

  14. S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren: IEEE J. Quantum Electron. 25 (1989) 1513.

    Article  ADS  Google Scholar 

  15. J. Hader, J. V. Moloney, and S. W. Koch: IEEE J. Quantum Electron. 41 (2005) 1217.

    Article  ADS  Google Scholar 

  16. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian: IEEE J. Sel. Top. Quantum Electron. 5 (1999) 561.

    Article  Google Scholar 

  17. W. J. Alford, T. D. Raymond, and A. A. Allerman: J. Opt. Soc. Am. B 19 (2002) 663.

    Article  ADS  Google Scholar 

  18. Z. L. Liau: Appl. Phys. Lett. 77 (2000) 651.

    Article  ADS  Google Scholar 

  19. A. J. Kemp, G. J. Valentine, J. M. Hopkins, J. E. Hastie, S. A. Smith, S. Calvez, M. D. Dawson, and D. Burns: IEEE J. Quantum Electron. 41 (2005) 148.

    Article  ADS  Google Scholar 

  20. A. J. Kemp, J. M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns: IEEE J. Quantum Electron. 44 (2008) 125.

    Article  ADS  Google Scholar 

  21. H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson: IEEE J. Sel. Top. Quantum Electron. 11 (2005) 1126.

    Article  Google Scholar 

  22. S. Adachi: J. Appl. Phys. 54 (1983) 1844.

    Article  ADS  Google Scholar 

  23. C. S. Chang and S. L. Chuang: IEEE J. Sel. Top. Quantum Electron. 1 (1995) 218.

    Article  Google Scholar 

  24. Y. Song, P. Zhang, X. Zhang, and Z. Zhang: Opt. Quantum. Electron. 41 (2009) 39.

    Article  Google Scholar 

  25. C. Yan, L. Qin, X. Shan, G. Lu, C. He, Y. Sun, T. Li, Y. Ning, L. Wang, and H. Jiang: Proc. SPIE 6020 (2005) 602004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Song, YR., Zhang, XP. et al. Numerical analysis of thermal effects in InGaAs system vertical-external-cavity surface-emitting laser. OPT REV 18, 317–323 (2011). https://doi.org/10.1007/s10043-011-0062-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-011-0062-7

Keywords

Navigation