Optical Review

, Volume 18, Issue 3, pp 287–292 | Cite as

Laser diode beam shaping by optical interference

  • Takehiro Fukushima
  • Koichiro Sakaguchi
  • Yasunori Tokuda
Regular Papers


We recently proposed a novel beam shaping technique that employs Lloyd’s mirror interference. In this study, we apply this technique to three commercial laser diodes: laser diodes used for optical pumping of solid-state lasers, for laser beam printers, and for laser displays. The elliptical output beams from these laser diodes could be transformed into nearly circular beams by inserting a mirror-polished GaAs substrate below the active layer of each laser diode and adjusting its height. The experimentally observed far-field patterns were predicted fairly well by numerical calculations based on Huygens’ integral. We confirmed that our beam shaping technique is applicable to laser diodes with various wavelengths and vertical beam divergence angles. We also describe the monolithic configuration of the beam shaping system, which can be fabricated by dry etching.


laser diodes beam shaping Lloyd’s mirror interference beam divergence angle mirror-polished semiconductor substrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    T. Suhara: Semiconductor Laser Fundamentals (Mercel Dekker, New York, 2004) Sect. 1.4, p. 14.CrossRefGoogle Scholar
  2. 2).
    X. Zeng and A. Naqwi: Appl. Opt. 32 (1993) 4491.ADSCrossRefGoogle Scholar
  3. 3).
    H. C. Casey, Jr. and M. B. Panish: Heterostructure Lasers (Academic Press, New York, 1978) Sect. 2.7, p. 71.Google Scholar
  4. 4).
    A. Furuya, T. Fukushima, Y. Kito, C. Anayama, M. Sugano, H. Sudo, M. Kondo, and T. Tanahashi: Electron. Lett. 30 (1994) 416.CrossRefGoogle Scholar
  5. 5).
    J. F. Forkner and D. W. Kuntz: Proc. SPIE 740 (1987) 27.Google Scholar
  6. 6).
    Y. Adachi: Proc. SPIE 740 (1987) 36.Google Scholar
  7. 7).
    K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim: Opt. Lett. 27 (2002) 1339.ADSCrossRefGoogle Scholar
  8. 8).
    M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian: IEEE J. Sel. Top. Quantum Electron. 5 (1999) 561.CrossRefGoogle Scholar
  9. 9).
    S. Sinzinger, K.-H. Brenner, J. Moisel, T. Spick, and M. Testorf: Appl. Opt. 34 (1995) 6626.ADSCrossRefGoogle Scholar
  10. 10).
    S. Ogata and Y. Ito: Opt. Eng. 33 (1994) 3656.ADSCrossRefGoogle Scholar
  11. 11).
    A. Aharoni, J. W. Goodman, and Y. Amitai: Opt. Lett. 18 (1993) 179.ADSCrossRefGoogle Scholar
  12. 12).
    T. Fukushima, K. Miyahara, and N. Nakata: IEICE Trans. Electron. E92-C (2009) 1095.ADSCrossRefGoogle Scholar
  13. 13).
    A. E. Siegman: Lasers (University Science Books, Mill Valley, CA, 1986) Chap. 17, p. 663.Google Scholar
  14. 14).
    A. E. Siegman: Lasers (University Science Books, Mill Valley, CA, 1986) Chap. 16, p. 626.Google Scholar
  15. 15).
    T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro: J. Opt. Soc. Am. B 21 (2004) 935.ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2011

Authors and Affiliations

  • Takehiro Fukushima
    • 1
  • Koichiro Sakaguchi
    • 1
  • Yasunori Tokuda
    • 1
  1. 1.Department of Communication Engineering, Faculty of Computer Science and System EngineeringOkayama Prefectural UniversitySoja, OkayamaJapan

Personalised recommendations