Advertisement

Optical Review

, Volume 18, Issue 3, pp 273–283 | Cite as

A color constancy method using fuzzy measures and integrals

  • Tara Akhavan
  • Mohsen Ebrahimi Moghaddam
Regular Papers

Abstract

The ability of measuring colors of objects, independent of light source illumination, is called color constancy which is an important problem in machine vision and image processing fields. In this paper, we propose a new combinational method that is based on fuzzy measures and integrals to estimate the chromaticity of the light source as the major step of color constancy. The basic idea of the proposed method is that there are color constancy methods with some similarities in their structure and the way they are applied. The proposed method works with the help of assigning fuzzy measures to these methods and their combinations and computing the Choquet fuzzy integral. To approve the proposed method, we selected four well known algorithms and their results were combined by the proposed approach. In selecting these methods, it was tried to choose the ones which had better performance in compare to other methods, however the proposed method can be applied on any other methods just by adjusting its parameters. It is shown in this article that proposed approach performs better than other proposed methods for color constancy most of the time.

Keywords

color constancy RGB color space fuzzy measures Choquet fuzzy integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    D. Forsyth: Int. J. Comput. Vision 5 (1990) 5.CrossRefGoogle Scholar
  2. 2).
    M. Ebner: Color Constancy (Wiley, New York, 2007) Wiley IS&T Series in Imaging Science and Technology, 1st ed.Google Scholar
  3. 3).
    S. D. Hordley: Color Res. Appl. 31 (2006) 303.CrossRefGoogle Scholar
  4. 4).
    S. Bianco, G. Ciocca, C. Cusano, and R. Schettini: Pattern Recognition 43 (2010) 695.zbMATHCrossRefGoogle Scholar
  5. 5).
    E. Land and J. McCann: J. Opt. Soc. Am. 61 (1971) 1.ADSCrossRefGoogle Scholar
  6. 6).
    G. Buchsbaum: J. Franklin Inst. 310 (1980) 1.CrossRefGoogle Scholar
  7. 7).
    G. Finlayson and E. Trezzi: Proc. IS&T/SID 12th Color Imaging Conf., 2004, p. 37.Google Scholar
  8. 8).
    G. Finlayson and S. Hordley: Int. J. Comput. Vision 67 (2006) 93.CrossRefGoogle Scholar
  9. 9).
    B. Funt, V. Cardei, and K. Barnard: Proc. IS&T/SID Forth Color Imaging Conf., 1996.Google Scholar
  10. 10).
    M. Ebner: Pattern Recognition Lett. 27 (2006) 1220.CrossRefGoogle Scholar
  11. 11).
    J. van de Weijer, T. Gevers, and A. Gijsenij: IEEE Trans. Image Process. 16 (2007) 2207.MathSciNetADSCrossRefGoogle Scholar
  12. 12).
    M. Ebner: Mach. Vision Appl. 20 (2009) 283.CrossRefGoogle Scholar
  13. 13).
    A. Gijsenij, T. Gevers, and J. Weijer: Int. J. Comput. Vision 86 (2010) 127.CrossRefGoogle Scholar
  14. 14).
    S. Bianco, G. Ciocca, C. Cusano, and R. Schettini: IEEE Trans. Image Process. 17 (2008) 2381.MathSciNetADSCrossRefGoogle Scholar
  15. 15).
    J. Weijer, C. Schmid, and J. Verbeek: IEEE 11th Int. Conf. Computer Vision, 2007.Google Scholar
  16. 16).
    A. Gijsenij and T. Gevers: IEEE Trans. Pattern Anal. Mach. Intell. 33 (2010) 687.CrossRefGoogle Scholar
  17. 17).
    V. C. Cardei and B. Funt: Proc. IS&T/SID 7th Color Imaging Conf.: Color Science, Systems and Applications, 1999.Google Scholar
  18. 18).
    K. Barnard, L. Martin, A. Coath, and B. Funt: IEEE Trans. Image Process. 11 (2002) 985.ADSCrossRefGoogle Scholar
  19. 19).
    T. Akhavan and M. Ebrahimi Moghadam: Int. Conf. Image Processing Theory, Tools and Applications, 2010.Google Scholar
  20. 20).
    M. Bertalmío, V. Caselles, and E. Provenzi: Int. J. Comput. Vision 83 (2009) 101.CrossRefGoogle Scholar
  21. 21).
    E. H. Land: Am. Sci. 52 (1964) 247.Google Scholar
  22. 22).
    M. Grabisch, T. Murofushi, and M. Sugeno: Fuzzy Measures and Integrals: Theory and Applications (Springer, New York, 2000) p. 70.zbMATHGoogle Scholar
  23. 23).
    R. Mesiar: J. Fuzzy Sets Syst. 156 (2005) 365.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24).
  25. 25).
    F. Ciurea and B. Funt: in Proc. IS&T/SID 11th Color Imaging Conf., 2003, p. 160.Google Scholar

Copyright information

© The Optical Society of Japan 2011

Authors and Affiliations

  • Tara Akhavan
    • 1
  • Mohsen Ebrahimi Moghaddam
    • 1
  1. 1.Electrical and Computer Engineering DepartmentShahid Beheshti UniversityG.C., TehranIran

Personalised recommendations