Skip to main content
Log in

Optical head with metal cladding in asymmetrical butted-grating structure for small thermal spot in laser-assisted magnetic recording

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A planar near-field optical head with a high optical efficiency of 12.9% (3.2 times higher than that of our previous design) for laser-assisted magnetic recording is described. In this head, a slab-type waveguide with a narrow core is butt-coupled into a one-sided multilayer thin-film stack. Metal cladding is used in the core because of its high optical efficiency due to surface plasmon excitation. To keep production costs low, we use only two layers for the side part, which act as a two-index-step lens that couples light in the side part into a core of the central part. We optimized the parameters of this optical head and recording medium by means of an optical simulator using the finite-difference time-domain method and a thermal simulator. The calculated full width half maximum (FWHM) optical spot size on the recording medium is 24 × 47 nm2 and the thermal spot size is 80 × 88 nm2 (FWHM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Progress in Nano-Electro-Optics I, ed. M. Ohtsu (Springer, Heidelberg, 2002).

    Google Scholar 

  2. Daiyoryo Hikari Sutoreji (High-Areal-Density Optical Storage), ed. M. Ohtsu (Ohmsha, Tokyo, 2008) [in Japanese].

    Google Scholar 

  3. M. Kryder, E. Gage, T. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden: Proc. IEEE 96 (2008) 1810.

    Article  Google Scholar 

  4. U. C. Fischer: in Near Field Optics, ed. D. W. Pohl and D. Courjon (Kluwer Academic, Dordrecht, 1993) p. 255.

    Google Scholar 

  5. R. D. Grober, R. J. Schoelkopf, and D. E. Prober: Appl. Phys. Lett. 70 (1997) 1354.

    Article  ADS  Google Scholar 

  6. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida: Opt. Lett. 31 (2006) 259.

    Article  ADS  Google Scholar 

  7. X. Shi, L. Hesselink, and R. L. Thornton: Opt. Lett. 28 (2003) 1320.

    Article  ADS  Google Scholar 

  8. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage: Nat. Photonics 3 (2009) 220.

    Article  ADS  Google Scholar 

  9. T. Rausch, C. Mihalcea, K. Pelhos, D. Karns, K. Mountfield, Y. A. Kubota, X. Wu, G. Ju, W. A. Challener, C. Peng, L. Li, Y.-T. Hsia, and E. C. Gage: Jpn. J. Appl. Phys. 45 (2006) 1314.

    Article  ADS  Google Scholar 

  10. M. Seigler, W. Challener, E. Gage, N. Gokemeijer, B. Lu, K. Pelhos, C. Peng, R. Rottmayer, X. Yang, H. Zhou, X. Zhu, and T. Rausch: Proc. SPIE 6620 (2007) 66200P.

    Article  Google Scholar 

  11. S. Hasegawa and F. Tawa: Appl. Opt. 43 (2004) 3085.

    Article  ADS  Google Scholar 

  12. F. Tawa, S. Hasegawa, and W. Odajima: J. Appl. Phys. 101 (2007) 09H503.

    Article  Google Scholar 

  13. F. Tawa, S. Hasegawa, and W. Odajima: J. Magn. Soc. Jpn. 32 (2008) 168.

    Article  Google Scholar 

  14. F. Akagi, M. Igarashi, A. Nakamura, M. Mochizuki, H. Saga, T. Matsumoto, and K. Ishikawa: Jpn. J. Appl. Phys. 43 (2004) 7483.

    Article  ADS  Google Scholar 

  15. W. A. Challener, E. Gage, A. Itagi, and C. Peng: Jpn. J. Appl. Phys. 45 (2006) 6632.

    Article  ADS  Google Scholar 

  16. W. Odajima, F. Tawa, and S. Hasegawa: Opt. Rev. 14 (2007) 180.

    Article  Google Scholar 

  17. W. F. Brown: Phys. Rev. 130 (1963) 1677.

    Article  ADS  Google Scholar 

  18. S. Hasegawa and W. Odajima: submitted to Opt. Rev.

  19. S. Hasegawa and F. Tawa: Opt. Rev. 17 (2010) 404.

    Article  Google Scholar 

  20. J. J. Burke, G. I. Stegeman, and T. Tamir: Phys. Rev. B 33 (1986) 5186.

    Article  ADS  Google Scholar 

  21. Our experimental data.

  22. Handbook of Optical Constants of Solids, ed. E. D. Palik (Academic, Orlando, FL, 1985).

    Google Scholar 

  23. American Institute of Physics Handbook, ed. D. E. Gray (McGraw-Hill, New York, 1972).

    Google Scholar 

  24. https://www.horiba.com/jp/ja/download/1252/ [in Japanese].

  25. W. A. Challener and S. L. Grove: Appl. Opt. 29 (1990) 3040.

    Article  ADS  Google Scholar 

  26. Thermophysical Properties Handbook (Yokendo, Tokyo, 2008) [in Japanese]. Fe:Ni mass ratio is 6: 4.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, Sy., Tawa, F. & Odajima, W. Optical head with metal cladding in asymmetrical butted-grating structure for small thermal spot in laser-assisted magnetic recording. OPT REV 17, 486–494 (2010). https://doi.org/10.1007/s10043-010-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-010-0088-2

Keywords

Navigation