Optical Review

, Volume 16, Issue 5, pp 540–547 | Cite as

Design of optical coupling systems between two-dimensional quasi-stadium laser diodes and single-mode optical fibers

  • Takehiro Fukushima
  • Yoshiyuki Handa
  • Kunihiro Miyahara
Regular Papers

Abstract

Optical coupling systems between a two-dimensional quasi-stadium laser diode and single-mode optical fibers using gradient-index rod lenses are designed for both stable and unstable laser resonators for the first time. A novel numerical approach using a combination of the extended Fox-Li calculation method and Gaussian beam transformations is proposed. In the case of a stable laser resonator, two kinds of beam propagation modes appear, namely the axis mode, in which an optical beam propagates along the cavity axis, and the ring mode, in which optical beams propagate along the diamond-shaped trajectory. The coupling efficiencies are found to be 54% for the axis mode and 52% for the ring mode. In contrast, an unstable laser resonator exhibits complicated modes, in which several highly directional beams are emitted from the end mirrors. The total coupling efficiency for these output beams is calculated to be 9.6%. The 3-dB tolerances for the lens pitch and alignment angles of the gradient-index rod lenses are also discussed.

Keywords

two-dimensional laser diode single-mode optical fiber optical coupling system coupling efficiency 3-dB tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan: Appl. Phys. Lett. 60 (1992) 289.CrossRefADSGoogle Scholar
  2. 2).
    A. F. J. Levi, R. E. Slusher, S. L. McCall, S. J. Pearton, and W. S. Hobson: Appl. Phys. Lett. 62 (1993) 2021.CrossRefADSGoogle Scholar
  3. 3).
    S. Ando, N. Kobayashi, and H. Ando: Jpn. J. Appl. Phys. 34 (1995) L4.CrossRefADSGoogle Scholar
  4. 4).
    C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nöckel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho: Science 280 (1998) 1556.CrossRefADSGoogle Scholar
  5. 5).
    T. Fukushima and T. Harayama: IEEE J. Sel. Top. Quantum Electron. 10 (2004) 1039.CrossRefGoogle Scholar
  6. 6).
    A. Mekis, J. U. Nöckel, C. Chen, A. D. Stone, and R. K. Chang: Phys. Rev. Lett. 75 (1995) 2682.CrossRefADSGoogle Scholar
  7. 7).
    C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho: Opt. Lett. 27 (2002) 824.CrossRefADSGoogle Scholar
  8. 8).
    T. Fukushima, T. Harayama, T. Miyasaka, and P. O. Vaccaro: J. Opt. Soc. Am. B 21 (2004) 935.CrossRefADSGoogle Scholar
  9. 9).
    T. Tanaka, M. Hentschel, T. Fukushima, and T. Harayama: Phys. Rev. Lett. 98 (2007) 033902.Google Scholar
  10. 10).
    M. Lebental, J. S. Lauret, R. Hierle, and J. Zyss: Appl. Phys. Lett. 88 (2006) 031108.Google Scholar
  11. 11).
    W. Fang, H. Cao, and G. S. Solomon: Appl. Phys. Lett. 90 (2007) 081108.Google Scholar
  12. 12).
    M. Lebental, J. S. Lauret, J. Zyss, C. Schmit, and E. Bogomolny: Phys. Rev. A 75 (2007) 033806.Google Scholar
  13. 13).
    S. Shinohara, T. Fukushima, and T. Harayama: Phys. Rev. A 77 (2008) 033807.Google Scholar
  14. 14).
    T. Fukushima, T. Tanaka, and T. Harayama: Appl. Phys. Lett. 87 (2005) 191103.Google Scholar
  15. 15).
    T. Fukushima and T. Harayama: CLEO/QELS Conf. Tech. Dig., 2007, JWA127.Google Scholar
  16. 16).
    M. Choi, T. Tanaka, T. Fukushima, and T. Harayama: Appl. Phys. Lett. 88 (2006) 211110.Google Scholar
  17. 17).
    T. Fukushima: J. Lightwave Technol. 18 (2000) 2208.CrossRefADSGoogle Scholar
  18. 18).
    T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida: Opt. Lett. 27 (2002) 1430.CrossRefADSGoogle Scholar
  19. 19).
    T. Fukushima, T. Harayama, P. Davis, P. O. Vaccaro, T. Nishimura, and T. Aida: Opt. Lett. 28 (2003) 408.CrossRefADSGoogle Scholar
  20. 20).
    T. Fukushima, T. Harayama, and J. Wiersig: Phys. Rev. A 73 (2006) 023816.Google Scholar
  21. 21).
    T. Fukushima and T. Harayama: Proc. IEEE LEOS Annu. Meet. Conf., 2006, p. 931.Google Scholar
  22. 22).
    T. Fukushima, T. Tanaka, and T. Harayama: Opt. Lett. 32 (2007) 3397.CrossRefADSGoogle Scholar
  23. 23).
    A. E. Siegman: Lasers (University Science Books, California, 1986) Chap. 19, pp. 744–750.Google Scholar
  24. 24).
    A. E. Siegman: Lasers (University Science Books, California, 1986) Chap. 16, pp. 632–633.Google Scholar
  25. 25).
    K. Kawano: Hikariketugokei no Kiso to Oyo (Fundamentals and Application of Optical Coupling Systems) (Gendai Kougaku-sha, Tokyo, 1991) p. 23 [in Japanese].Google Scholar
  26. 26).
    T. Sakamoto: J. Mod. Opt. 41 (1994) 951.CrossRefMathSciNetADSGoogle Scholar
  27. 27).
    M. Saruwatari and K. Nawata: Appl. Opt. 18 (1979) 1847.CrossRefADSGoogle Scholar
  28. 28).
    T. Fukushima, S. A. Biellak, Y. Sun, and A. E. Siegman: Opt. Express 2 (1998) 21.CrossRefADSGoogle Scholar
  29. 29).
    A. G. Fox and T. Li: Bell Syst. Tech. J. 40 (1961) 453.Google Scholar
  30. 30).
    D. Marcuse: Bell Syst. Tech. J. 56 (1977) 703.Google Scholar
  31. 31).
    T. Sakamoto: Appl. Opt. 31 (1992) 5184.CrossRefADSGoogle Scholar
  32. 32).
    M. Saruwatari and T. Sugie: IEEE J. Quantum Electron. 17 (1981) 1021.CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of Japan 2009

Authors and Affiliations

  • Takehiro Fukushima
    • 1
  • Yoshiyuki Handa
    • 1
  • Kunihiro Miyahara
    • 1
  1. 1.Department of Communication Engineering, Faculty of Computer Science and System EngineeringOkayama Prefectural UniversitySoja, OkayamaJapan

Personalised recommendations