Use of polyethylene glycol coatings for optical fibre humidity sensing

Abstract

Humidity induced change in the refractive index and thickness of the polyethylene glycol (PEG) coatings are in situ investigated for a range from 10 to 95%, using an optical waveguide spectroscopic technique. It is experimentally demonstrated that, upon humidity change, the optical and swelling characteristics of the PEG coatings can be employed to build a plastic fibre optic humidity sensor. The sensing mechanism is based on the humidity induced change in the refractive index of the PEG film, which is directly coated onto a polished segment of a plastic optical fibre with dip-coating method. It is observed that PEG, which is a highly hydrophilic material, shows no monotonic linear response to humidity but gives different characteristics for various ranges of humidity levels both in index of refraction and in thickness. It undergoes a physical phase change from a semi-crystalline structure to a gel one at around 80% relative humidity. At this phase change point, a drastic decrease occurs in the index of refraction as well as a drastic increase in the swelling of the PEG film. In addition, PEG coatings are hydrogenated in a vacuum chamber. It is observed that the hydrogen has a preventing effect on the humidity induced phase change in PEG coatings. Finally, the possibility of using PEG coatings in construction of a real plastic fibre optic humidity sensor is discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1)

    S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey: Sens. Actuators B 98 (2004) 5.

    Article  Google Scholar 

  2. 2)

    S. Muto, O. Suzuki, T. Amano, and M. Morisawa: Meas. Sci. Technol. 14 (2003) 746.

    Article  ADS  Google Scholar 

  3. 3)

    P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger: Opt. Lett. 27 (2002) 1385.

    Article  ADS  Google Scholar 

  4. 4)

    Z. M. Rittersma: Sens. Actuators A 96 (2002) 196.

    Article  Google Scholar 

  5. 5)

    R. Jindal, S. O. Tao, J. P. Singh, and P. S. Gaikwad: Opt. Eng. 41 (2002) 1093.

    Article  ADS  Google Scholar 

  6. 6)

    S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel: Anal. Chim. Acta 448 (2001) 1.

    Article  Google Scholar 

  7. 7)

    S. McMurtry, J. D. Wright, and D. A. Jackson: Sens. Actuators B 67 (2000) 52.

    Article  Google Scholar 

  8. 8)

    F. J. Arregui, Y. J. Liu, I. R. Matias, and R. O. Claus: Sens. Actuators B 59 (1999) 54.

    Article  Google Scholar 

  9. 9)

    B. D. Gupta and Ratnanjali: Sens. Actuators B 80 (2001) 132.

    Article  Google Scholar 

  10. 10)

    G. H. Cross, Y. T. Ren, and N. J. Freeman: J. Appl. Phys. 86 (1999) 6483.

    Article  ADS  Google Scholar 

  11. 11)

    S. Otsuki, K. Adachi, and T. Taguchi: Anal. Sci. 14 (1998) 633.

    Article  Google Scholar 

  12. 12)

    Z. A. Ansari, R. N. Karekar, and R. C. Aiyer: Thin Solid Films 305 (1997) 330.

    Article  ADS  Google Scholar 

  13. 13)

    M. N. Weiss, R. Srivastava, and H. Groger: Electron. Lett. 32 (1996) 842.

    Article  Google Scholar 

  14. 14)

    D. C. Bownass, J. S. Barton, and J. D. C. Jones: Opt. Lett. 22 (1997) 346.

    ADS  Google Scholar 

  15. 15)

    F. S. Damos, R. C. S. Luz, and L. T. Kubota: Langmuir 21 (2005) 602.

    Article  Google Scholar 

  16. 16)

    B. Bilen: Ph. D. Thesis, Faculty of Arts and Sciences, Bogazici University, 2007.

  17. 17)

    E. Kretschmann: Z. Phys. 241 (2005) 313.

    ADS  Google Scholar 

  18. 18)

    R. Ulrich and R. Torge: Appl. Opt. 12 (1973) 2901.

    ADS  Article  Google Scholar 

  19. 19)

    M. Biesalski and J. Rühe: Langmuir 16 (2000) 1943.

    Article  Google Scholar 

  20. 20)

    W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie: Macromolecules 32 (1999) 136.

    Article  ADS  Google Scholar 

  21. 21)

    J. H. Seinfeld and S. N. Pandis: Atmospheric Chemistry and Physics (Wiley/VCH, Weinheim, 1998) Ch. 9, p. 507.

    Google Scholar 

  22. 22)

    G. Tae, J. A. Kornfield, J. A. Hubbell, and D. Johannsmann: Langmuir 18 (2002) 8241.

    Article  Google Scholar 

  23. 23)

    T. M. Aminabhavi and K. Banerjee: J. Chem. Eng. Data 43 (1998) 852.

    Article  Google Scholar 

  24. 24)

    K. L. A. Chan and S. G. Kazarian: Vib. Spectrosc. 35 (2004) 45.

    Article  Google Scholar 

  25. 25)

    O. Erdamar, Y. Skarlatos, G. Aktas, and M. N. Inci: Appl. Phys. A 83 (2006) 159.

    Article  ADS  Google Scholar 

  26. 26)

    H. U. Yogun, Y. Ercil, Y. Menceloglu, and M. N. Inci: European Patent WO2006011117 (2006).

  27. 27)

    C. Ronot, H. Archenault, H. Gagnaire, J. P. Goure, N. Jaffrezic-Renault, and T. Pichery: Sens. Actuators B 11 (1993) 375.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mehmet Naci Inci.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Acikgoz, S., Bilen, B., Demir, M.M. et al. Use of polyethylene glycol coatings for optical fibre humidity sensing. OPT REV 15, 84 (2008). https://doi.org/10.1007/s10043-008-0012-1

Download citation

Key words

  • humidity
  • sensors
  • plastic fibre
  • optics
  • polyethylene glycol