Advertisement

Optical Review

, 15:84 | Cite as

Use of polyethylene glycol coatings for optical fibre humidity sensing

  • Sabriye Acikgoz
  • Bukem Bilen
  • Mustafa Muamer Demir
  • Yusuf Ziya Menceloglu
  • Yani Skarlatos
  • Gulen Aktas
  • Mehmet Naci InciEmail author
Regular Papers

Abstract

Humidity induced change in the refractive index and thickness of the polyethylene glycol (PEG) coatings are in situ investigated for a range from 10 to 95%, using an optical waveguide spectroscopic technique. It is experimentally demonstrated that, upon humidity change, the optical and swelling characteristics of the PEG coatings can be employed to build a plastic fibre optic humidity sensor. The sensing mechanism is based on the humidity induced change in the refractive index of the PEG film, which is directly coated onto a polished segment of a plastic optical fibre with dip-coating method. It is observed that PEG, which is a highly hydrophilic material, shows no monotonic linear response to humidity but gives different characteristics for various ranges of humidity levels both in index of refraction and in thickness. It undergoes a physical phase change from a semi-crystalline structure to a gel one at around 80% relative humidity. At this phase change point, a drastic decrease occurs in the index of refraction as well as a drastic increase in the swelling of the PEG film. In addition, PEG coatings are hydrogenated in a vacuum chamber. It is observed that the hydrogen has a preventing effect on the humidity induced phase change in PEG coatings. Finally, the possibility of using PEG coatings in construction of a real plastic fibre optic humidity sensor is discussed.

Key words

humidity sensors plastic fibre optics polyethylene glycol 

References

  1. 1).
    S. K. Shukla, G. K. Parashar, A. P. Mishra, P. Misra, B. C Yadav, R. K. Shukla, L. M. Bali, and G. C. Dubey: Sens. Actuators B 98 (2004) 5.CrossRefGoogle Scholar
  2. 2).
    S. Muto, O. Suzuki, T. Amano, and M. Morisawa: Meas. Sci. Technol. 14 (2003) 746.CrossRefADSGoogle Scholar
  3. 3).
    P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger: Opt. Lett. 27 (2002) 1385.CrossRefADSGoogle Scholar
  4. 4).
    Z. M. Rittersma: Sens. Actuators A 96 (2002) 196.CrossRefGoogle Scholar
  5. 5).
    R. Jindal, S. O. Tao, J. P. Singh, and P. S. Gaikwad: Opt. Eng. 41 (2002) 1093.CrossRefADSGoogle Scholar
  6. 6).
    S. J. Glenn, B. M. Cullum, R. B. Nair, D. A. Nivens, C. J. Murphy, and S. M. Angel: Anal. Chim. Acta 448 (2001) 1.CrossRefGoogle Scholar
  7. 7).
    S. McMurtry, J. D. Wright, and D. A. Jackson: Sens. Actuators B 67 (2000) 52.CrossRefGoogle Scholar
  8. 8).
    F. J. Arregui, Y. J. Liu, I. R. Matias, and R. O. Claus: Sens. Actuators B 59 (1999) 54.CrossRefGoogle Scholar
  9. 9).
    B. D. Gupta and Ratnanjali: Sens. Actuators B 80 (2001) 132.CrossRefGoogle Scholar
  10. 10).
    G. H. Cross, Y. T. Ren, and N. J. Freeman: J. Appl. Phys. 86 (1999) 6483.CrossRefADSGoogle Scholar
  11. 11).
    S. Otsuki, K. Adachi, and T. Taguchi: Anal. Sci. 14 (1998) 633.CrossRefGoogle Scholar
  12. 12).
    Z. A. Ansari, R. N. Karekar, and R. C. Aiyer: Thin Solid Films 305 (1997) 330.CrossRefADSGoogle Scholar
  13. 13).
    M. N. Weiss, R. Srivastava, and H. Groger: Electron. Lett. 32 (1996) 842.CrossRefGoogle Scholar
  14. 14).
    D. C. Bownass, J. S. Barton, and J. D. C. Jones: Opt. Lett. 22 (1997) 346.ADSGoogle Scholar
  15. 15).
    F. S. Damos, R. C. S. Luz, and L. T. Kubota: Langmuir 21 (2005) 602.CrossRefGoogle Scholar
  16. 16).
    B. Bilen: Ph. D. Thesis, Faculty of Arts and Sciences, Bogazici University, 2007.Google Scholar
  17. 17).
    E. Kretschmann: Z. Phys. 241 (2005) 313.ADSGoogle Scholar
  18. 18).
    R. Ulrich and R. Torge: Appl. Opt. 12 (1973) 2901.ADSCrossRefGoogle Scholar
  19. 19).
    M. Biesalski and J. Rühe: Langmuir 16 (2000) 1943.CrossRefGoogle Scholar
  20. 20).
    W. L. Chen, K. R. Shull, T. Papatheodorou, D. A. Styrkas, and J. L. Keddie: Macromolecules 32 (1999) 136.CrossRefADSGoogle Scholar
  21. 21).
    J. H. Seinfeld and S. N. Pandis: Atmospheric Chemistry and Physics (Wiley/VCH, Weinheim, 1998) Ch. 9, p. 507.Google Scholar
  22. 22).
    G. Tae, J. A. Kornfield, J. A. Hubbell, and D. Johannsmann: Langmuir 18 (2002) 8241.CrossRefGoogle Scholar
  23. 23).
    T. M. Aminabhavi and K. Banerjee: J. Chem. Eng. Data 43 (1998) 852.CrossRefGoogle Scholar
  24. 24).
    K. L. A. Chan and S. G. Kazarian: Vib. Spectrosc. 35 (2004) 45.CrossRefGoogle Scholar
  25. 25).
    O. Erdamar, Y. Skarlatos, G. Aktas, and M. N. Inci: Appl. Phys. A 83 (2006) 159.CrossRefADSGoogle Scholar
  26. 26).
    H. U. Yogun, Y. Ercil, Y. Menceloglu, and M. N. Inci: European Patent WO2006011117 (2006).Google Scholar
  27. 27).
    C. Ronot, H. Archenault, H. Gagnaire, J. P. Goure, N. Jaffrezic-Renault, and T. Pichery: Sens. Actuators B 11 (1993) 375.CrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2008

Authors and Affiliations

  • Sabriye Acikgoz
    • 1
  • Bukem Bilen
    • 1
  • Mustafa Muamer Demir
    • 2
  • Yusuf Ziya Menceloglu
    • 3
  • Yani Skarlatos
    • 1
  • Gulen Aktas
    • 1
  • Mehmet Naci Inci
    • 1
    Email author
  1. 1.Department of PhysicsBogazici UniversityIstanbulTurkey
  2. 2.Department of ChemistryIzmir Institute of TechnologyIzmirTurkey
  3. 3.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations