Skip to main content
Log in

Analog Integrated Circuit for Motion Detection with Simple-Shape Recognition Based on Frog Vision System

  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We proposed in this research a novel two-dimensional network based on the frog visual system, with a motion detection function and a newly developed simple-shape recognition function, for use in object discrimination by integrated circuits. Specifically, the network mimics the signal processing of the small-field cell in a frog brain, consisting of the tectum and thalamus, which generates signals of the motion and simple shape of an object. The proposed network is constructed from simple analog complementary metal oxide semiconductor (CMOS) circuits; a test chip of the proposed network was fabricated with a 1.2 μm CMOS process. Measurements on the chip clarified that the proposed network can generate signals of the moving direction, velocity, and simple shape, as well as perform information processing of the small-field cell. Results with the simulation program with integrated circuit emphasis (SPICE) showed that the analog circuits used in the network have low power consumption. Applications of the proposed network are expected to realize advanced vision chips with functions such as object discrimination and target tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Mead (1989) Analog VLSI and Neural Systems Addison Wesley Reading MA Occurrence Handle0715.68002

    MATH  Google Scholar 

  2. A. Moini (1999) Vision Chips Kluwer Academic Norwell MA

    Google Scholar 

  3. T. Asai M. Ohtani H. Yonezu (1999) Jpn. J. Appl. Phys. 38 2256 Occurrence Handle10.1143/JJAP.38.2256 Occurrence Handle1999JaJAP..38.2256A

    Article  ADS  Google Scholar 

  4. M. Ohtani H. Yonezu T. Asai (2000) Jpn. J. Appl. Phys. 39 1160 Occurrence Handle10.1143/JJAP.39.1160 Occurrence Handle2000JaJAP..39.1160O

    Article  ADS  Google Scholar 

  5. S. C. Liu (2000) IEEE Trans. Circuits Systems II 47 1458 Occurrence Handle10.1109/82.899640

    Article  Google Scholar 

  6. S. C. Liu A. U. Viretta (2001) Biol. Cybernetics 85 449 Occurrence Handle10.1007/s004220100267

    Article  Google Scholar 

  7. H. Yamada T. Miyashita M. Ohtani K. Nishio H. Yonezu Y. Furukawa (2002) Opt. Rev. 9 1 Occurrence Handle10.1007/s10043-002-0001-8

    Article  Google Scholar 

  8. H. Yamada T. Miyashita M. Ohtani K. Nishio H. Yonezu Y. Furukawa (2001) Opt. Rev. 8 336 Occurrence Handle10.1007/s10043-001-0336-6

    Article  Google Scholar 

  9. T. K. Horiuchi C. Koch (1999) Neural Comput. 11 243 Occurrence Handle10.1162/089976699300016908

    Article  Google Scholar 

  10. G. Indiveri (1999) IEEE Trans. Circuits Systems II 46 1337 Occurrence Handle10.1109/82.803473

    Article  Google Scholar 

  11. A. P. Ewert (1974) Sci. Am. 240 34 Occurrence Handle10.1038/scientificamerican0374-34

    Article  Google Scholar 

  12. D. Ingle (1973) Science 180 422 Occurrence Handle10.1126/science.180.4084.422 Occurrence Handle1973Sci...180..422I

    Article  ADS  Google Scholar 

  13. D. Ingle (1973) Science 181 1053 Occurrence Handle10.1126/science.181.4104.1053 Occurrence Handle1973Sci...181.1053I

    Article  ADS  Google Scholar 

  14. R. L. Didday (1976) Math. Biosci. 30 169 Occurrence Handle10.1016/0025-5564(76)90024-9

    Article  Google Scholar 

  15. K. Nishio H. Yonezu M. Ohtani H. Yamada Y. Furukawa (2003) Opt. Rev. 10 96 Occurrence Handle10.1007/s10043-003-0096-6

    Article  Google Scholar 

  16. K. Nishio H. Yonezu Y. Furukawa (2006) IEICE Trans. Fund. Electron. Commun. Comput. Sci. E89-A 416

    Google Scholar 

  17. N. Hatsopoulos F. Gabbiani G. Laurent (1995) Science 270 1000 Occurrence Handle10.1126/science.270.5238.1000 Occurrence Handle1995Sci...270.1000H

    Article  ADS  Google Scholar 

  18. F. Gabbiani C. Mo G. Laurent (2001) J. Neurosci. 21 314

    Google Scholar 

  19. K. Nishio H. Yonezu M. Ohtani H. Yamada Y. Furukawa (2004) Opt. Rev. 11 38 Occurrence Handle10.1007/s10043-004-0038-y

    Article  Google Scholar 

  20. K. Nishio H. Yonezu A. B. Kariyawasam Y. Yoshikawa S. Sawa Y. Furukawa (2004) Opt. Rev. 11 24 Occurrence Handle10.1007/s10043-004-0024-4

    Article  Google Scholar 

  21. A. G. Andreou K. A. Boahen P. O. Pouliquen A. Pavasovic R. E. Jenkins K. Strohbehn (1991) IEEE Trans. Neural Netw. 2 205 Occurrence Handle10.1109/72.80331 Occurrence Handle1991ITNN....2..205A

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimihiro Nishio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishio, K., Yonezu, H. & Furukawa, Y. Analog Integrated Circuit for Motion Detection with Simple-Shape Recognition Based on Frog Vision System. OPT REV 14, 271–281 (2007). https://doi.org/10.1007/s10043-007-0271-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-007-0271-2

Key words

Navigation