Skip to main content
Log in

Recalibration of Visual Stability Mechanism Occurs in a Higher-Order Visual System

  • VISION
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We investigated whether an adaptation effect occurs in a virtual environment where an extent of retinal image motion caused by head rotation is modulated depending on the extent of the rotation. We defined the value #x201C;Gain#x201D;, as the ratio of #x201C;the angular velocity of retinal motion in the virtual environment#x201D; to #x201C;the angular velocity of head motion in the real environment#x201D;. Subjects rotated their heads in the adaptation phase in which one of three Gains (0.5, 1.0, and 1.5) was adapted; the phase lasted one period (3 min). Immediately afterwards, they adjusted the Gain to enable them to perceive a #x201C;stable environment#x201D; in the test phase. The results showed that adjusted Gains in the test phase tended to shift to the adaptation Gains. In addition, we tested whether the adaptation effect occurs in the somatic system and whether interocular transfer occurs, and found that the somatic system was not modulated by immersion in the conflicting environment but interocular transfer was observed. These results indicate that our visual stability system can adapt to such virtual environments within short minutes and that the adaptation effect occurs in our binocular visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1) H. Wallach: Sci. Am. May (1985) 92.

  2. 2) H. Wallach: Annu. Rev. Psychol. 38 (1987) 1.

    Article  Google Scholar 

  3. 3) A. Mack: Percept. Psychophys. 8 (1970) 291.

    Google Scholar 

  4. 4) H. Wallach, L. Stanton and D. Becker: Percept. Psychophys. 15 (1974) 339.

    Google Scholar 

  5. 5) W. R. Whipple and W. Wallach: Percept. Psychophys. 24 (1978) 349.

    Google Scholar 

  6. 6) J. C. Hay and S. Sawyer: Percept. Psychophys. 5 (1969) 310.

    Google Scholar 

  7. 7) H. Wallach and T. Canal: Percept. Psychophys. 19 (1976) 445.

    Google Scholar 

  8. 8) H. Wallach and J. Bacon: Percept. Psychophys. 21 (1977) 227.

    Google Scholar 

  9. 9) R. B. Post: Percept. Psychophys. 59 (1997) 148.

    Google Scholar 

  10. 10) I. P. Howard: Human Visual Orientation (John Wiley & Sons, New York, 1982).

    Google Scholar 

  11. 11) G. M. Stratton: Psychol. Rev. 4 (1897) 341.

    Google Scholar 

  12. 12) H. Wallach and J. Kravitz: Psychonomic Sci. 2 (1965) 217.

    Google Scholar 

  13. 13) H. Wallach and E. W. Flaherty: Percept. Psychophys. 19 (1976) 261.

    Google Scholar 

  14. 14) E. Kowler: The Role of Visual and Cognitive Processes in the Control of Eye Movement (Elsevier Science, New York, 1990).

    Google Scholar 

  15. 15) P. D. Kramer, D. C. Roberts, M. Shelhamer and D. S. Zee: J. Vestibular Res. 8 (1998) 363.

    Google Scholar 

  16. 16) M. J. Hawken, H. K. Distler, K. R. Gegenfurtner and H. A. H. C. van Veen: Perception 29 (2000) 1423.

    Google Scholar 

  17. 17) F. P. Redlick, M. Jenkin and L. R. Harris: Vision Res. 41 (2001) 213.

    Article  Google Scholar 

  18. 18) I. Siegler: Cogn. Brain Res. 9 (2002) 205.

    Google Scholar 

  19. 19) I. Viaud-Delmon, Y. P. Ivanenko, A. Berthoz and R. Jouvent: Nat. Neurosci. 1 (1998) 15.

    Article  Google Scholar 

  20. 20) L. R. Harris, M. Jenkin and D. C. Zikovitz: Exp. Brain Res. 135 (2000) 12.

    Article  Google Scholar 

  21. 21) S. Lambrey, I. Viaud-Delmon and A. Berthoz: Cogn. Brain Res. 14 (2002) 177.

    Article  Google Scholar 

  22. 22) Y. P. Ivanenko and R. Grasso: Cogn. Brain Res. 5 (1997) 323.

    Article  Google Scholar 

  23. 23) A. Berthoz and I. Viaud-Delmon: Curr. Opin. Neurobiol. 9 (1999) 708.

    Article  Google Scholar 

  24. 24) K. Takahara, K. Okajima and M. Takase: Kogaku 29 (2000) 167 [in Japanese].

    Google Scholar 

  25. 25) K. Takahara, K. Okajima and M. Takase: Eizo Jyoho Media 59 (2005) 755 [in Japanese].

    Google Scholar 

  26. 26) T. Probst, R. Loose, M. Niedeggen and E. R. Wist: Behav. Brain Res. 70 (1995) 133.

    Article  Google Scholar 

  27. 27) Y. P. Ivanenko, I. Viaud-Delmon, I. Siegler, I. Israel and A. Berthoz: Neurosci. Lett. 241 (1998) 167.

    Article  Google Scholar 

  28. 28) F. Hlavacka, T. Mergner and B. Boltha: Neurosci. Lett. 210 (1996) 83.

    Article  Google Scholar 

  29. 29) M. S. Banks, S. M. Ehrlich, B. T. Backus and J. A. Crowell: Vision Res. 34 (1994) 3197.

    Google Scholar 

  30. 30) M. S. Banks, S. M. Ehrlich, B. T. Backus and J. A. Crowell: Vision Res. 36 (1996) 431.

    Article  Google Scholar 

  31. 31) S. M. Ehrlich, D. M. Beck, J. A. Crowell, T. C. A. Freeman and M. S. Banks: Vision Res. 38 (1998) 3129.

    Article  Google Scholar 

  32. 32) C. S. Royden, M. S. Banks and J. A. Crowell: Nature 369 (1992) 583.

    ADS  Google Scholar 

  33. 33) J. A. Crowell, M. S. Banks, K. V. Shenoy and R. A. Andersen: Nat. Neurosci. 1 (1998) 732.

    Article  Google Scholar 

  34. 34) K. Okajima, T. Oda and M. Takase: Opt. Rev. 5 (1998) 124.

    Google Scholar 

  35. 35) P. J. Bex, S. Bedingham and S. T. Hammett: J. Opt. Soc. Am. 16 (1999) 2817.

    ADS  Google Scholar 

  36. 36) K. R. Brooks: J. Vision 2 (2002) 218.

    Google Scholar 

  37. 37) A. T. Smith and G. K. Edgar: Vision Res. 34 (1994) 253.

    Google Scholar 

  38. 38) P. Thompson: Vision Res. 21 (1981) 337.

    Article  Google Scholar 

  39. 39) C. M. Oman: Acta Oto-Laryngol. 44 (1982) 1.

    Google Scholar 

  40. 40) D. E. Parker and R. L. Poston: Percept. Psychophys. 36 (1984) 461.

    Google Scholar 

  41. 41) R. B. Welch and R. B. Post: Percept. Psychophys. 58 (1996) 389.

    Google Scholar 

  42. 42) G. Clement, S. J. Wood, M. F. Reschke, A. Berthoz and M. Igarashi: J. Vestibular. Res. 9 (1999) 207.

    Google Scholar 

  43. 43) T. Mergner and T. Rosemeier: Brain Res. Rev. 28 (1998) 118.

    Article  Google Scholar 

  44. 44) D. M. Merfeld, L. Zupan and R. J. Peterka: Nature 398 (1999) 615.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahara, K., Okajima, K. & Takase, M. Recalibration of Visual Stability Mechanism Occurs in a Higher-Order Visual System. OPT REV 13, 111–118 (2006). https://doi.org/10.1007/s10043-006-0111-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-006-0111-9

Key words

Navigation